Self-Normalised Concentration via Sequential Probability
Assignment

1 Introduction

We give a new proof of the following result (Abbasi-Yadkori et al., 2011).

Theorem 1. Let F = (%) be a filtration. Let (¢;);>1 be an F-adapted sequence of random variables such that
each g, is conditionally 1-sub-Gaussian, i.e.,

YAER, Elexp(ler)|Fi_1] < exp(A?/2).

Let (Xy)>1 be an F-predictable sequence of random vectors (in R?). Let U € R** be a positive-definite matrix. For
everyn > 1, define
n n
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Forany § € (0,1],
P (Eln > 1, [ISul3, 411 > log det(U ™V, +1d) + log %) <s.

This can be proved using the method of mixtures (Abbasi-Yadkori et al., 2011) or the variational approach to concen-
tration (Chugg & Ramdas, 2025), which is also known as PAC-Bayes. We show that this result can be proved using
regret bounds for a learning problem known as sequential probability assignment.

Section 2 is an introduction to the setting of sequential probability assignment, and repeats a number of definitions and
results from Clerico et al. (2025). In Section 3, we prove Theorem 1.

Notation. For vectors z,y € R?, we use (x,y) to denote their Euclidean inner product. For a positive (semi-)definite
matrix U € R?*4, we define the (semi-)norm ||0||y := (0, U6).

2 Introduction (continued)

We consider a sequential linear regression problem, which is a special case of the setting studied in Clerico et al.
(2025). We observe the sequences (X;):>1 and (Y%);>1, where each X; € R? is a vector of covariates and each
Y; € R is areal-valued response. The covariates can be generated in an arbitrary sequential fashion, meaning each X;
candepend on X1, Y7,..., X;_1,Y;_1. Each response Y; is generated according to the linear model

K = <0*,Xt> + &
Foreacht > 0, we define %; = o(X1,Y7,..., Xy, Yy, Xy11) tobe the o-algebra generated by X1, Y7, ..., Xy, Yy, Xiaq.
Each noise variable ¢, is conditionally 1-sub-Gaussian, meaning

VYA E€R, Elexp(Ae;)|-Fi1] < exp(\?/2).



In Clerico et al. (2025), it is shown that one can construct confidence sequences for the parameter 6* via a reduction to
an online learning problem known as sequential probability assignment. We are not interested confidence sequences,
but we are interested in sequential probability assignment. Let us describe a special case of this problem. We define
the loss function

0:(0) == 1(Y: — (0%, X,))?.

1
2
In addition, for any probability distribution @ € A(R?) with Lebesgue density ¢, we define the log loss as

L@ = o [ exp(~£(6)dQ(0) = ~log | exp(~£(0))a(6)a.

R

We consider the following game played between a learner and an environment, with the following steps repeated in
eachroundt=1,...,n:

1. the environment reveals X; to the learner,

2. the learner chooses a distribution Q; € A(R?),
3. the environment reveals Y; to the learner, and
4. the learner incurs the log loss -Z;(Q:).

The performance of the learner is determined by the regret against a comparator strategy, which plays a fixed § € R?
in each round. The regret after n rounds is

regret,, (0) = Z Z(Q1) — Zﬁt(é) .
t=1 t=1

Using the sub-Gaussian property of the noise variables, one can show that for any fixed 0, the difference between the
total loss of 8* and the total loss of € is the logarithm of a non-negative supermartingale. As a result, Ville’s inequality
for non-negative supermartingales tells us that

P (Eln €N, > 4(67) = > 4(6) > log ;) <4.
t=1

t=1

Theorem 2.2 of Clerico et al. (2025) states that if we add the regret of any strategy (Q;)¢>1 against 6 to the right-hand
side, then this bound holds uniformly over all § € R4,

Theorem 2. Forany d € (0,1),

P (EI(n,H) e N x R4, Zét(e*) _ Zét(é) > regret,, (9) + log ;) <6.
=1

t=1
Notice that if we replace the regret by any upper bound on the regret, then the statement of Theorem 2 remains true.
Upper bounds on the regret are provided in Section 3 of Clerico et al. (2025). To state (one of) them, we must first

introduce a few more things. Let p : RY — R be a convex and differentiable function such that [, exp(—p(6))df <
0. Let us define the total regularised loss as

Zu(0) == 3 0(0) + p(0).

For any convex and differentiable function f : R? — R, the Bregman divergence induced by f is

By (0,0") = f(0) — f(6") — (6 — 0", V(0)) -



Notice that this is the difference between f(6) and the first-order Taylor polynomial of f around 6’. Let us define the

Bregman information gain as
—ABz (0,0,))d0
Vn := —log (feXp( AGLD) ) )

[ exp(—p(6))do
Proposition 3.1 in Clerico et al. (2025) states that the regret of the exponentially weighted average (EWA) forecaster
(a.k.a. Vovk’s aggregating algorithm) can be bounded in terms of the Bregman information gain.

Proposition 3. There exists a strategy (Q;)i>1 such that for all comparators 0 that satisfy p() < oo,

regret,, (0) < p(0) + vy, .
Substituting this regret bound into Theorem 2 gives the following corollary.

Corollary 4. Forany 6 € (0,1),

n

P <3(n,0) €N xR?, Zﬁt(e*) - Zét(é) > p(0) 4 yn + log ;) <3J.
t=1

t=1

3 Self-normalised concentration via sequential probability assignment

Using the results from the previous section, we can now prove Theorem 1. We choose p(6) = 1|6 — 6*||. With this
choice, one can verify that the minimiser of Z,, is

0, = argmin{Z,(0)} = (V,, + U)~! ZXth + U | .
OcRd =1
We begin by finding an expression for the Bregman divergence induced by Z,,.

Lemma 5. If p(6) = £[|6 — 6|

2, then

1
Bz2,(6,6) = 510 -0}, .0

Proof. Since Z,, is quadratic, it is equal to its second-order Taylor polynomial (around any point). The Bregman
divergence %, (0,0’) is equal to the difference between Z,(6) and the first-order Taylor polynomial of Z,, around
0'. Thus Bz, (0,0") is equal to the quadratic term in the Taylor series of Z,, around 6’. Therefore,

1 1
RBz,(0,0") = §||9 032,61 = §||9 A

This concludes the proof. O

With this expression for #z_(0,6'), we can evaluate the Bregman information gain.

Lemma 6. If p(6) = 1|0 — 6*|

2
77, then

1
=7 logdet(U~V,, +1d).



Proof. We will use that fact that for any 1 € R? and any positive-definite matrix ¥ € R4*4,
/d exp(— 310 — pl|$-1)d0 =/ (2m) det(%) .
R L
Using the expression for Zz, (6,0’) in Lemma 5, we obtain

Jga exp(— 2H9 0, +U)d@ 1 . 1 .
n = —1 Va = — log(det(U det(V,, + U)) = = logdet(U™"V,, + 1d) .
; og< O ) — S og(det(U) det(V, + 1) = 3 logdet(U 1V, +10)

This concludes the proof. O
We’re now ready to prove Theorem 1.

Proof of Theorem 1. First, we notice that

t=1 t=1

This allows us to write N
s1Snllfv, 1oy = 316" = Onll¥, 10 -

Since 6,, minimises Z,,,

n n

0 = 0ull v = B2, (0%,0,) =607 +p(07) = > 4(B) — p(0n) -

t=1 t=1

Finally, for any 6 € (0,1), the combination of Corollary 4 and Lemma 6 tells us that, with probability at least ¢, for
alln > 1,

Zét 0*) + p(6*) — Z ) < Y +log L = flogdet(U_IVn-i-Id)-i-log%.
t=1 t—1
Putting everything together proves Theorem 1. [

4 Conclusion
We have seen a new proof of the self-normalised concentration inequality in Abbasi-Yadkori et al. (2011). We conclude
by exploring some connections between this proof, the method of mixtures, and the proof in Abbasi-Yadkori et al.

(2011). Using a standard telescoping sum argument (cf. Lemma B.1 in Clerico et al. (2025)), the regret of the EWA
forecaster can be re-written as

et (7) = —log | exp<zft - 6))41(0).

Here, (); is the distribution with density ¢; () o< exp(—p(¢)). Combining this with Theorem 2, one has

IP’(EInEN, 1og/exp (Z&(G* Zét >dQ1 > loglls) <4.
t=1



This is what we would get by applying the method of mixtures (with the mixture distribution ()1) to the collection of
non-negative supermartingales (M, (0))gcra, Where

M, (0) = exp (iet(a*) - tz:zt(e)> .

Since we already know that Theorem 1 can be proved using the method of mixtures (Abbasi-Yadkori et al., 2011), it
is not so surprising that the approach taken here is closely related to the method of mixtures. Note however, that the
mixing distribution and the collection of supermartingales that appear here are not the same as those used in the proof
of Theorem 1 in Abbasi-Yadkori et al. (2011). There, the mixture distribution has density h(x)  exp(—3||z||#) and
the collection of supermartingales is (M,,(x)),cra, Where

M, (x) := exp ((ac,Sn> — %||x||%/t) )

Nevertheless, the resulting mixture supermartingale | M, (z)h(z)dz is the same. In particular,

e (3200~ 3600 )a016) = [ exo (90,50 = 10—, ) o b=

%) Texp(L10 = 071700
exp(—3z[|7)

= /eXp (<$7Sn> - %Hx”%/")fex ( 7||x||2U)d.Td$
2

. / M, (2)h(z)de
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