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Stochastic Linear Bandits
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(a) *

At round t, query any action at ∈ At, receive a noisy reward rt = φ(at)>θ∗ + εt.

Goal: Minimise cumulative regret.

Assumptions: ε1, ε2, . . . are (conditionally) σ-sub-Gaussian and ‖θ∗‖2 ≤ B.

θ∗ ∈ Rd is unknown, φ is known and upper bounds on σ and B are known.

Examples: Black-box optimisation, recommendation systems, etc.
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Confidence Sets/Bounds for Stochastic Linear Bandits

Confidence set: A confidence set Θt contains all θ’s that could plausibly be θ∗ given data up to time t.

We want the smallest sequence of confidence sets Θ1,Θ2, . . . that satisfies the coverage condition

Pa1,a2,...
r1,r2,...

[ ∀t ≥ 1 : θ∗ ∈ Θt ] ≥ 1− δ.

Gold Standard (OFUL):1 Θt is an ellipsoid centred at the regularised least squares/Ridge estimate θ̂t, with a

radius determined using self-normalised concentration and the method of mixtures.

θ∗

θ̂t

θ1

θ2

The corresponding upper confidence bound is maxθ∈Θt{φ(a)>θ}.
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UCB Algorithms for Stochastic Linear Bandits

action a

re
wa

rd
 r

LinUCB:

For t = 0, 1, 2, . . .

� Use {(ak, rk)}tk=1 to construct a confidence set

Θt and the upper confidence bound

UCBΘt (a) := max
θ∈Θt

{φ(a)>θ}

� Play at+1 = argmaxa∈At+1
{UCBΘt (a)}

� Observe reward rt+1 = φ(at+1)>θ∗ + εt+1
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This Work

Question: Is it possible to construct even tighter confidence sets/bounds for linear bandits?

Rest of the Talk:

� Constructing confidence sets for linear bandits

� Computing confidence bounds/solving maxθ∈Θt{φ(a)>θ}

� Regret bounds for LinUCB with our confidence sets

� In what sense is this better than OFUL (and why)?

� Some experimental results

� Open questions
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Notation, Etc.



Notation

Notation:

� θ∗ = true parameter vector, θ = a candidate parameter vector

� f1, f2, . . . = sequence of predictions

� Ht = (a1, r1, . . . , at, rt, at+1) = history of the bandit problem

Predictable sequences:

� I call a sequence of random variables x1, x2, . . . predictable if, given Ht−1, xt is no longer random

� e.g. a1, a2. . . . are predictable, f1, f2, . . . are predictable, r1, r2, . . . are not predictable

Matrix/vector notation:

� Φt = [φ(a1), . . . , φ(at)]> ∈ Rt×d = matrix of first t feature vectors

� rt = [r1, . . . , rt]> = vector of first t rewards

� εt = [ε1, . . . , εt]> = vector of first t noise variables

� f t = [f1, . . . , ft]> = vector of first t predictions
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Sequences of Predictions

Throughout the talk, f1, f2, . . . is a sequence of predictions for the rewards r1, r2, . . . , where each ft can

depend on the history Ht−1.

Examples:

� For a fixed θ, we could set ft = φ(at)>θ for each t ≥ 1 (or f t = Φtθ in matrix notation)

� f1, f2, . . . could be a sequence of predictions generated by running an online learning algorithm

� E.g., θ1,θ2, . . . could be a sequence of parameter estimates, and we could set ft = φ(at)>θt

� We could choose something boring like ft ≡ 0

Randomised predictions: Later on in the talk, we will consider distributions over sequences of predictions.

� f t will be a random draw from Pt, which is distribution on Rt

� Each Pt can depend on the history Ht−1

� If Pt = N (µt,T t), µt can still be thought of the first t predictions, and T t can be thought of as the

uncertainty associated with the first t predictions

� E.g. suppose θ ∼ N (0, I) and define Pt to be the induced distribution on Φtθ, so Pt = N (0,ΦtΦ>t )
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Constructing Confidence Sets



General Plan (Part 1)

Step 1: Construct a collection of non-negative random processes Mt(f t,θ) such that:

E[Mt(f t,θ
∗)|Ht−1] ≤Mt−1(f t−1,θ

∗) If θ 6= θ∗, Mt(f t,θ) blows up

We want to maximise Mt(f t,θ) w.r.t. f t, but the maximiser is not a predictable sequence.

Step 2: Laplace’s method/pseudo-maximisation/method of mixtures

Eft∼Pt [Mt(f t,θ)] ≈ max
ft

Mt(f t,θ).
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General Plan (Part 2)

Step 3: Use Ville’s inequality to determine a threshold level

P
(
∀t ≥ 1 : Eft∼Pt [Mt(f t,θ

∗)] ≤ 1/δ
)
≥ 1− δ.

Step 4: We define our confidence sets as

Θt :=
{
θ ∈ Rd : Eft∼Pt [Mt(f t,θ)] ≤ 1/δ

}
∩
{
θ ∈ Rd : ‖θ‖2 ≤ B

}
.
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What Do We Want From Mt(f t,θ
∗)?

We want to construct a collection of supermartingales Mt(f t,θ
∗) such that:

� Mt(f t,θ
∗) is always non-negative

� Eft∼Pt [Mt(f t,θ
∗)] has a closed-form expression whenever Pt is Gaussian

� Eft∼Pt [Mt(f t,θ
∗)] ≤ 1/δ is a convex constraint for θ∗

Look for Mt(f t,θ
∗) in the form

Mt(f t,θ
∗) = exp

(
t∑

k=1

quad(fk, φ(ak)>θ∗)

)
=

t∏
k=1

exp
(

quad(fk, φ(at)
>θ∗)

)

This is a supermartingale if, for all t ≥ 1,

E
[
exp

(
quad(ft, φ(at)

>θ∗)
)
|Ht−1

]
≤ 1.
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Look for Mt(f t,θ
∗) in the form

Mt(f t,θ
∗) = exp

(
t∑

k=1

quad(fk, φ(ak)>θ∗)

)
=

t∏
k=1

exp
(

quad(fk, φ(at)
>θ∗)

)

This is a supermartingale if, for all t ≥ 1,

E
[
exp

(
quad(ft, φ(at)

>θ∗)
)
|Ht−1

]
≤ 1.

11



Choosing The Quadratic Bits

Since ε1, ε2, . . . are (conditionally) σ-sub-Gaussian, we know that for any predictable λ1, λ2, . . . ,

E
[
exp(λt(ft − φ(at)

>θ∗)εt)|Ht−1

]
≤ exp

(
σ2λ2

t (ft − φ(at)>θ∗)2

2

)
.

Therefore, we know that

E
[
exp

(
λt(ft − φ(at)

>θ∗)εt −
σ2λ2

t (ft − φ(at)>θ∗)2

2

)
|Ht−1

]
≤ 1. (1)

Using εt = rt − φ(at)>θ∗, the exp(· · · ) term in (1) can be re-written as

exp

(
λt

2
(φ(at)

>θ∗ − rt)2 −
λt

2
(ft − rt)2 +

1

2
(λt − σ2λ2

t )(ft − φ(at)
>θ∗)2

)
.

Setting λt ≡ 1/σ2, this becomes

exp

(
1

2σ2
(φ(at)

>θ∗ − rt)2 −
1

2σ2
(ft − rt)2

)
.

12



Choosing The Quadratic Bits

Since ε1, ε2, . . . are (conditionally) σ-sub-Gaussian, we know that for any predictable λ1, λ2, . . . ,

E
[
exp(λt(ft − φ(at)

>θ∗)εt)|Ht−1

]
≤ exp

(
σ2λ2

t (ft − φ(at)>θ∗)2

2

)
.

Therefore, we know that

E
[
exp

(
λt(ft − φ(at)

>θ∗)εt −
σ2λ2

t (ft − φ(at)>θ∗)2

2

)
|Ht−1

]
≤ 1. (1)

Using εt = rt − φ(at)>θ∗, the exp(· · · ) term in (1) can be re-written as

exp

(
λt

2
(φ(at)

>θ∗ − rt)2 −
λt

2
(ft − rt)2 +

1

2
(λt − σ2λ2

t )(ft − φ(at)
>θ∗)2

)
.

Setting λt ≡ 1/σ2, this becomes

exp

(
1

2σ2
(φ(at)

>θ∗ − rt)2 −
1

2σ2
(ft − rt)2

)
.

12



Choosing The Quadratic Bits

Since ε1, ε2, . . . are (conditionally) σ-sub-Gaussian, we know that for any predictable λ1, λ2, . . . ,

E
[
exp(λt(ft − φ(at)

>θ∗)εt)|Ht−1

]
≤ exp

(
σ2λ2

t (ft − φ(at)>θ∗)2

2

)
.

Therefore, we know that

E
[
exp

(
λt(ft − φ(at)

>θ∗)εt −
σ2λ2

t (ft − φ(at)>θ∗)2

2

)
|Ht−1

]
≤ 1. (1)

Using εt = rt − φ(at)>θ∗, the exp(· · · ) term in (1) can be re-written as

exp

(
λt

2
(φ(at)

>θ∗ − rt)2 −
λt

2
(ft − rt)2 +

1

2
(λt − σ2λ2

t )(ft − φ(at)
>θ∗)2

)
.

Setting λt ≡ 1/σ2, this becomes

exp

(
1

2σ2
(φ(at)

>θ∗ − rt)2 −
1

2σ2
(ft − rt)2

)
.

12



Choosing The Quadratic Bits

Since ε1, ε2, . . . are (conditionally) σ-sub-Gaussian, we know that for any predictable λ1, λ2, . . . ,

E
[
exp(λt(ft − φ(at)

>θ∗)εt)|Ht−1

]
≤ exp

(
σ2λ2

t (ft − φ(at)>θ∗)2

2

)
.

Therefore, we know that

E
[
exp

(
λt(ft − φ(at)

>θ∗)εt −
σ2λ2

t (ft − φ(at)>θ∗)2

2

)
|Ht−1

]
≤ 1. (1)

Using εt = rt − φ(at)>θ∗, the exp(· · · ) term in (1) can be re-written as

exp

(
λt

2
(φ(at)

>θ∗ − rt)2 −
λt

2
(ft − rt)2 +

1

2
(λt − σ2λ2

t )(ft − φ(at)
>θ∗)2

)
.

Setting λt ≡ 1/σ2, this becomes

exp

(
1

2σ2
(φ(at)

>θ∗ − rt)2 −
1

2σ2
(ft − rt)2

)
.

12



Putting Everything Together

Multiplying the exp(quad(· · · )) terms together, we obtain

Mt(f t,θ
∗) =

t∏
k=1

exp

(
1

2σ2
(φ(at)

>θ∗ − rt)2 −
1

2σ2
(ft − rt)2

)

= exp

(
1

2σ2
‖Φtθ∗ − rt‖22 −

1

2σ2
‖f t − rt‖

2
2

)
.

Closed-form integration. Mt(f t,θ
∗) is an unnormalised Gaussian density function (with mean rt and

covariance σ2I), so we can use known tricks for integrating products of Gaussian densities.

Convex constraint. Mt(f t,θ
∗) is the composition of exp(·) and a convex function of θ∗, which means

Eft∼Pt [Mt(f t,θ
∗)] ≤ 1/δ is a convex constraint for θ∗.

Blowing up when θ 6= θ∗. If f1, f2, . . . predicts the rewards better than φ(a1)>θ, φ(a2)>θ, . . . , then

Mt(f t,θ) will grow exponentially with t (in expectation).
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Motivation for Mixing

We would like to maximise Mt(f t,θ
∗) w.r.t. f t, but the maximiser is not a predictable sequence.

argmax
ft∈Rt

{
exp

(
1

2σ2
‖Φtθ∗ − rt‖22 −

1

2σ2
‖f t − rt‖

2
2

)}
= rt.

For a function g(x) with a minimiser x∗, Laplace’s asymptotic formula tells us that,∫ ∞
−∞

exp(−λg(x))dx ≈
∫ ∞
−∞

exp

(
−λg(x∗)−

λ

2
g′′(x∗)(x− x∗)2

)
dx

= exp(−λg(x∗))

√
2π

g′′(x∗)
= max

x
{exp(−λg(x))}

√
2π

g′′(x∗)

This suggests that we can perform “pseudo-maximisation” w.r.t. f t via integration w.r.t. a (probability)

measure, i.e.

Eft∼Pt

[
exp

(
1

2σ2
‖Φtθ∗ − rt‖22 −

1

2σ2
‖f t − rt‖

2
2

)]
≈ max

ft

{
exp

(
1

2σ2
‖Φtθ∗ − rt‖22 −

1

2σ2
‖f t − rt‖

2
2

)}
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Which Mixture Distributions Are Allowed?

We can choose any sequence of mixture distributions as long as Eft∼Pt [Mt(f t,θ
∗)] is a supermartingale, i.e.

E
[
Eft∼Pt [Mt(f t,θ

∗)] |Ht−1

]
≤ Eft−1∼Pt−1

[
Mt−1(f t−1,θ

∗)
]
.

Suppose that P1, P2, . . . satisfies

1. Pt depends on only the history Ht−1 (and not the future rt, at+1, rt+1, . . . )

2. Pt(f t) = pt(ft|f t−1)Pt−1(f t−1)

In this case, we have

E
[
Eft∼Pt [Mt(f t,θ

∗)] |Ht−1

]
= Eft∼Pt [E [Mt(f t,θ

∗)|Ht−1]] (1.)

≤ Eft∼Pt
[
Mt−1(f t−1,θ

∗)
]

(Mt is a supermartingale)

= Eft−1∼Pt−1

[
Mt−1(f t−1,θ

∗)
]

(2.)
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Gaussian Mixture Distributions

A sequence P1 = N (µ1,T 1), P2 = N (µ2,T 2), . . . satisfies 1. and 2. if

µt =


|

µt−1

|
µt

 , T t =


T1

T t−1

...

Tt−1

T1 · · · Tt−1 Tt

 ,

Each new element µt and row/column T1, . . . , Tt can depend on the history Ht−1.

With Pt = N (µt,T t), the martingale mixture is

Eft∼N (µt,T t)
[Mt(f t,θ

∗)] =
1√

det(I + T t/σ2)
exp

(
1

2σ2
‖Φtθ∗ − rt‖22 −

1

2σ2
‖µt − rt‖2(I+T t/σ2)−1

)
.
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Martingale Mixture Tail Bound

The constraint Eft∼N (µt,T t)
[Mt(f t,θ

∗)] ≤ 1/δ can be rearranged into

‖Φtθ∗ − rt‖22 ≤ (µt − rt)
>
(
I +

T t

σ2

)−1

(µt − rt) + σ2 ln

(
det

(
I +

T t

σ2

))
+ 2σ2 ln(1/δ).

Standard mixture distributions: Pt = N (0, cΦtΦ>t )

‖Φtθ∗ − rt‖22 ≤ r>t
(
I +

cΦtΦ>t
σ2

)−1

rt + σ2 ln

(
det

(
I +

cΦtΦ>t
σ2

))
+ 2σ2 ln(1/δ) =: R2

MM,t.

On the one hand...

� N (0, cΦtΦ>t ) is good enough to give us tighter confidence sets/bounds

� cΦtΦ>t is rank d, so R2
MM,t can be computed relatively cheaply

On the other hand, µt = 0 seems bit a silly.
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Confidence Sets For Linear Bandits

θ∗

θ1

θ2

Using our martingale tail bound, we have

‖Φtθ∗ − rt‖2 ≤ RMM,t,

This means that θ∗ lies within the set∗

{θ ∈ Rd : ‖Φtθ − rt‖2 ≤ RMM,t}.

Incorporating the smoothness assumption, we obtain

Θt = {θ ∈ Rd : ‖Φtθ − rt‖2 ≤ RMM,t, ‖θ‖2 ≤ B}.
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≤ R̃t}, where θ̂t = Φ

†
trt and R̃t is some other radius quantity

18



Confidence Sets For Linear Bandits

θ∗

θ1

θ2

Using our martingale tail bound, we have

‖Φtθ∗ − rt‖2 ≤ RMM,t,

This means that θ∗ lies within the set∗

{θ ∈ Rd : ‖Φtθ − rt‖2 ≤ RMM,t}.

Incorporating the smoothness assumption, we obtain

Θt = {θ ∈ Rd : ‖Φtθ − rt‖2 ≤ RMM,t, ‖θ‖2 ≤ B}.

∗ this set can be re-written as {θ ∈ Rd : ‖θ − θ̂t‖Φ>t Φt
≤ R̃t}, where θ̂t = Φ

†
trt and R̃t is some other radius quantity

18



Confidence Sets For Linear Bandits (Single Ellipsoid)

θ∗

θ1

θ2 By taking a weighted (by α > 0) sum, we obtain a

single quadratic constraint for θ∗

‖Φtθ∗ − rt‖22 + α ‖θ∗‖22 ≤ R
2
MM,t + αB2,

By completing the square on the LHS, this constraint

can be re-written as∗

‖θ∗ − θ̂α,t‖(Φ>t Φt+αI) ≤ RAMM,t

This means that θ∗ lies within the ellipsoid

Θαt = {θ ∈ Rd : ‖θ − θ̂α,t‖(Φ>t Φt+αI) ≤ RAMM,t}.
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Computing and Maximising Confidence Bounds



Convex Martingale Mixture UCB

θ1

θ2

φ(a)

θ∗

θUCB

The UCB for our double ellipsoid confidence set is

UCBΘt (a) = max
θ∈Rd

φ(a)>θ

s.t. ‖Φtθ − rt‖2 ≤ RMM,t

and ‖θ‖2 ≤ B

= φ(a)>θUCB.

UCBΘt (a) can be computed in O(d3) time complexity

via interior point methods.

We call LinUCB with these confidence sets/bounds Con-

vex Martingale Mixture (CMM-)UCB.
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Analytic Martingale Mixture UCB

θ1

θ2

φ(a)

θ∗

The UCB for our single ellipsoid confidence set is

UCBΘαt
(a) = max

θ∈Rd
φ(a)>θ

s.t. ‖θ − θ̂α,t‖2(Φ>t Φt+αI)
≤ R2

AMM,t.

This time, there is a closed-form solution.

UCBΘαt
(a) = φ(a)>θ̂α,t +RAMM,t‖φ(a)‖(Φ>t Φt+αI)−1 .

We call LinUCB with these confidence sets/bounds An-

alytic Martingale Mixture (AMM-)UCB.
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Confidence Bound Maximisation

To run LinUCB with our confidence sets, we need to maximise UCBΘt (a) = maxθ∈Θt{φ(a)>θ} w.r.t. a

4 2 0 2 4
5.0

2.5

0.0

2.5

5.0

Linear 
UCB t(a)

4 2 0 2 4
5.0

2.5

0.0

2.5

5.0

Non-linear 
UCB t(a)

For continuous action sets, we approximately maximise UCBΘt (a) w.r.t a using gradient-based methods.

For CMM-UCB, UCBΘt (a) and ∇aUCBΘt (a) can be computed numerically using differentiable convex

optimisation (surprisingly easy with cvxpylayers2).
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optimisation (surprisingly easy with cvxpylayers2).

2A. Agrawal et al. (2019) Differentiable convex optimization layers. NeurIPS
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Regret Bounds



Bounding the Radius

The full expression for the (squared) AMM radius is

R2
AMM,t = rt

(
I +

cΦtΦ>t
σ2

)−1

rt + σ2 ln

(
det

(
I +

cΦtΦ>t
σ2

))
+ 2σ2 ln(1/δ)

+ αB2 − r>t rt + r>t Φt
(

Φ>t Φt + αI
)−1

Φ>t rt.

Using the Matrix Inversion Lemma, we have

rt

(
I +

cΦtΦ>t
σ2

)−1

rt = r>t rt − r>t Φt

(
Φ>t Φt +

σ2

c
I

)−1

Φ>t rt.

If we set α = σ2/c, the quadratic terms cancel, and we can use the determinant-trace inequality*

R2
AMM,t = σ2

(
ln

(
det

(
I +

cΦtΦ>t
σ2

))
+
B2

c
+ 2 ln(1/δ)

)
≤ σ2

(
d ln

(
1 +

ctL2

σ2d

)
+
B2

c
+ 2 ln(1/δ)

)
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∗ Assuming ‖φ(a)‖2 ≤ L.

25



OFUL Analysis

Step 1. Use optimism to bound the cumulative regret by the confidence bound widths.

T∑
t=1

φ(a∗)>θ∗ − φ(at)
>θ∗ ≤

T∑
t=1

UCBΘt−1
(a∗)− LCBΘt−1

(at) ≤
T∑
t=1

UCBΘt−1
(at)− LCBΘt−1

(at).

Step 2. For both CMM-UCB and AMM-UCB, we have

T∑
t=1

UCBΘt−1
(at)− LCBΘt−1

(at) ≤
T∑
t=1

2RAMM,t−1‖φ(at)‖(Φ>t−1Φt−1+αI)−1 .

Step 3. Separately upper bound RAMM,T−1 and
∑T
t=1 ‖φ(at)‖(Φ>t−1Φt−1+αI)−1 , to obtain

T∑
t=1

φ(a∗)>θ∗ − φ(at)
>θ∗ ≤ O(d

√
T ln(T )).
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Comparison With OFUL



How Does AMM-UCB Compare To OFUL?

We derive and use a bound on the norm of the noise vector

‖εt‖2 = ‖Φtθ∗ − rt‖2 ≤ RMM,t.

For c = σ2/α and any α > 0, this leads to the inequality

‖θ∗ − θ̂α,t‖(Φ>t Φt+αI) ≤ RAMM,t =

√
σ2 ln

(
det

(
1

α
Φ>t Φt + I

))
+ αB2 + 2σ2 ln(1/δ).

OFUL uses a bound on the (weighted) norm of the projection of the noise vector

‖Φ>t εt‖(Φ>t Φt+αI)−1 ≤ σ

√
ln

(
det

(
1

α
Φ>t Φt + I

))
+ 2 ln(1/δ).

This leads to a similar, but looser (due to
√
a+ b ≤

√
a+
√
b) inequality

‖θ∗ − θ̂α,t‖(Φ>t Φt+αI) ≤ σ

√
ln

(
det

(
1

α
Φ>t Φt + I

))
+ 2 ln(1/δ) +

√
αB.
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Why Is AMM-UCB Better Than OFUL?

Bounds on ‖Φtθ∗ − rt‖2 and ‖θ∗‖2 fit together better than bounds on ‖Φ>t εt‖(Φ>t Φt+αI)−1 and ‖θ∗‖2.

OFUL: Using the definition of θ̂α,t, and then the triangle inequality,

‖θ∗ − θ̂α,t‖(Φ>t Φt+αI) = ‖Φ>t εt + αθ∗‖(Φ>t Φt+αI)−1

≤ ‖Φ>t εt‖(Φ>t Φt+αI)−1 + α‖θ∗‖(Φ>t Φt+αI)−1

≤ σ

√
ln

(
det

(
1

α
Φ>t Φt + I

))
+ 2 ln(1/δ) +

√
αB

The triangle inquality step causes the ln det and αB2 terms to appear under separate square roots.

Ours: We combine our constraints by completing the square on the LHS of

‖Φtθ∗ − rt‖22 + α‖θ∗‖22 ≤ R2
MM,t + αB2
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Some Experimental Results



Confidence Bound Comparison
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Hyperparameter Tuning

Raisin Maternal Banknotes

Mean Acc Max Acc Mean Acc Max Acc Mean Acc Max Acc

CMM-UCB (Ours) 0.818 ± 0.018 0.893 ± 0.019 0.744 ± 0.020 0.829 ± 0.023 0.954 ± 0.005 1.000 ± 0.000

AMM-UCB (Ours) 0.800 ± 0.017 0.892 ± 0.020 0.736 ± 0.020 0.829 ± 0.023 0.948 ± 0.005 1.000 ± 0.000

OFUL 0.764 ± 0.019 0.891 ± 0.019 0.722 ± 0.019 0.827 ± 0.022 0.929 ± 0.006 1.000 ± 0.000

IDS3 0.706 ± 0.048 0.891 ± 0.020 0.714 ± 0.019 0.827 ± 0.024 0.926 ± 0.007 1.000 ± 0.000

Freq-TS4 0.527 ± 0.022 0.884 ± 0.019 0.616 ± 0.018 0.823 ± 0.022 0.808 ± 0.012 1.000 ± 0.000
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3
J. Kirschner and A. Krause. (2018) Information directed sampling and bandits with heteroscedastic noise, COLT

4
S. Agrawal and N. Goyal. (2013) Thompson sampling for contextual bandits with linear payoffs, ICML
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Open Questions



When Do More Adaptive Mixture Distributions Help?

The means µt and covariances T t of the standard mixture distributions can be written in the form

µt =


m(a1)

m(a2)
...

m(at)

 , T t =


k(a1, a1) k(a1, a2) · · · k(a1, at)

k(a2, a1) k(a2, a2) · · · k(a2, at)
...

...
. . .

...

k(at, a1) k(at, a2) · · · k(at, at)

 ,

where m(a) = 0 and k(a, a′) = φ(a)>φ(a′).

We also tried out

µt =


m0(a1)

m1(a2)
...

mt−1(at)

 , T t =


k0(a1, a1) k1(a1, a2) · · · kt−1(a1, at)

k1(a2, a1) k1(a2, a2) · · · kt−1(a2, at)
...

...
. . .

...

kt−1(at, a1) kt−1(at, a2) · · · kt−1(at, at)

 ,

where mt(a) = kt(a)> (Kt + βI)−1 rt and kt(a, a′) = k(a, a′)− kt(a)> (Kt + βI)−1 kt(a′).
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When Do More Adaptive Mixture Distributions Help?
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Adaptive mixture distributions don’t always help this much though.
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Thank you for listening!


