

Improved Algorithms for Stochastic Linear Bandits Using Tail Bounds for Martingale Mixtures

Hamish Flynn David Reeb Melih Kandemir Jan Peters

At round t, query any action $a_t \in \mathcal{A}_t$, receive a noisy reward $r_t = \phi(a_t)^{\top} \boldsymbol{\theta}^* + \epsilon_t$.

At round t, query any action $a_t \in \mathcal{A}_t$, receive a noisy reward $r_t = \phi(a_t)^{\top} \boldsymbol{\theta}^* + \epsilon_t$.

Goal: Minimise cumulative regret.

At round t, query any action $a_t \in \mathcal{A}_t$, receive a noisy reward $r_t = \phi(a_t)^{\top} \boldsymbol{\theta}^* + \epsilon_t$.

Goal: Minimise cumulative regret.

Assumptions: $\epsilon_1, \epsilon_2, \ldots$ are (conditionally) σ -sub-Gaussian and $\|\boldsymbol{\theta}^*\|_2 \leq B$.

 $\pmb{\theta}^* \in \mathbb{R}^d$ is unknown, ϕ is known and upper bounds on σ and B are known.

At round t, query any action $a_t \in \mathcal{A}_t$, receive a noisy reward $r_t = \phi(a_t)^{\top} \boldsymbol{\theta}^* + \epsilon_t$.

Goal: Minimise cumulative regret.

Assumptions: $\epsilon_1, \epsilon_2, \ldots$ are (conditionally) σ -sub-Gaussian and $\|\theta^*\|_2 \leq B$.

 $\pmb{\theta}^* \in \mathbb{R}^d$ is unknown, ϕ is known and upper bounds on σ and B are known.

Examples: Black-box optimisation, recommendation systems, etc.

Confidence set: A confidence set Θ_t contains all θ 's that could plausibly be θ^* given data up to time t.

Confidence set: A confidence set Θ_t contains all θ 's that could plausibly be θ^* given data up to time t.

We want the smallest sequence of confidence sets Θ_1,Θ_2,\ldots that satisfies the coverage condition

$$\mathbb{P}_{\substack{a_1, a_2, \dots \\ r_1, r_2, \dots}} \left[\forall t \ge 1 : \boldsymbol{\theta}^* \in \Theta_t \right] \ge 1 - \delta.$$

Confidence set: A confidence set Θ_t contains all θ 's that could plausibly be θ^* given data up to time t.

We want the smallest sequence of confidence sets Θ_1,Θ_2,\ldots that satisfies the coverage condition

$$\mathbb{P}_{\substack{a_1,a_2,\dots\\r_1,r_2,\dots}} \left[\forall t \geq 1 : \boldsymbol{\theta}^* \in \Theta_t \right] \geq 1 - \delta.$$

Gold Standard (OFUL): Θ_t is an ellipsoid centred at the regularised least squares/Ridge estimate $\widehat{\theta}_t$, with a radius determined using self-normalised concentration and the method of mixtures.

Y. Abbasi-Yadkori et al. (2011) Improved algorithms for linear stochastic bandits. NeurIPS

Confidence set: A confidence set Θ_t contains all θ 's that could plausibly be θ^* given data up to time t.

We want the smallest sequence of confidence sets Θ_1,Θ_2,\ldots that satisfies the coverage condition

$$\mathbb{P}_{\substack{a_1,a_2,\dots\\r_1,r_2,\dots}} \left[\forall t \geq 1 : \boldsymbol{\theta}^* \in \Theta_t \right] \geq 1 - \delta.$$

Gold Standard (OFUL): Θ_t is an ellipsoid centred at the regularised least squares/Ridge estimate $\widehat{\theta}_t$, with a radius determined using self-normalised concentration and the method of mixtures.

The corresponding upper confidence bound is $\max_{\theta \in \Theta_t} {\{\phi(a)^\top \theta\}}$.

Y. Abbasi-Yadkori et al. (2011) Improved algorithms for linear stochastic bandits. NeurIPS

LinUCB:

For $t=0,1,2,\ldots$

LinUCB:

For t = 0, 1, 2, ...

• Use $\{(a_k,r_k)\}_{k=1}^t$ to construct a confidence set Θ_t and the upper confidence bound

$$UCB_{\Theta_t}(a) := \max_{\theta \in \Theta_t} \{ \phi(a)^{\top} \boldsymbol{\theta} \}$$

LinUCB:

For t = 0, 1, 2, ...

• Use $\{(a_k,r_k)\}_{k=1}^t$ to construct a confidence set Θ_t and the upper confidence bound

$$UCB_{\Theta_t}(a) := \max_{\theta \in \Theta_t} \{ \phi(a)^{\top} \boldsymbol{\theta} \}$$

• Play $a_{t+1} = \operatorname{argmax}_{a \in \mathcal{A}_{t+1}} \left\{ \operatorname{UCB}_{\Theta_t}(a) \right\}$

LinUCB:

For t = 0, 1, 2, ...

• Use $\{(a_k,r_k)\}_{k=1}^t$ to construct a confidence set Θ_t and the upper confidence bound

$$UCB_{\Theta_t}(a) := \max_{\theta \in \Theta_t} \{ \phi(a)^{\top} \boldsymbol{\theta} \}$$

- $\bullet \ \ \mathsf{Play} \ a_{t+1} = \mathrm{argmax}_{a \in \mathcal{A}_{t+1}} \left\{ \mathsf{UCB}_{\Theta_t}(a) \right\}$
- Observe reward $r_{t+1} = \phi(a_{t+1})^{\top} \boldsymbol{\theta}^* + \epsilon_{t+1}$

This Work

This Work

 $\textbf{Question:} \ \ \text{Is it possible to construct even tighter confidence sets/bounds for linear bandits?}$

This Work

Question: Is it possible to construct even tighter confidence sets/bounds for linear bandits?

Rest of the Talk:

- Constructing confidence sets for linear bandits
- Computing confidence bounds/solving $\max_{\theta \in \Theta_t} \{\phi(a)^{\top} \theta\}$
- Regret bounds for LinUCB with our confidence sets
- In what sense is this better than OFUL (and why)?
- Some experimental results
- Open questions

Notation

Notation:

- $oldsymbol{ heta}^*=$ true parameter vector, $oldsymbol{ heta}=$ a candidate parameter vector
- f_1, f_2, \ldots = sequence of predictions
- ullet $\mathcal{H}_t = (a_1, r_1, \dots, a_t, r_t, a_{t+1}) = \mathsf{history} \ \mathsf{of} \ \mathsf{the} \ \mathsf{bandit} \ \mathsf{problem}$

Notation

Notation:

- $oldsymbol{ heta}^*=$ true parameter vector, $oldsymbol{ heta}=$ a candidate parameter vector
- f_1, f_2, \ldots = sequence of predictions
- ullet $\mathcal{H}_t = (a_1, r_1, \dots, a_t, r_t, a_{t+1}) = \mathsf{history} \; \mathsf{of} \; \mathsf{the} \; \mathsf{bandit} \; \mathsf{problem}$

Predictable sequences:

- I call a sequence of random variables x_1, x_2, \ldots predictable if, given \mathcal{H}_{t-1} , x_t is no longer random
- ullet e.g. a_1,a_2,\ldots are predictable, f_1,f_2,\ldots are predictable, r_1,r_2,\ldots are not predictable

Notation

Notation:

- $oldsymbol{ heta}^*=$ true parameter vector, $oldsymbol{ heta}=$ a candidate parameter vector
- ullet $f_1, f_2, \ldots =$ sequence of predictions
- ullet $\mathcal{H}_t = (a_1, r_1, \dots, a_t, r_t, a_{t+1}) = \mathsf{history} \; \mathsf{of} \; \mathsf{the} \; \mathsf{bandit} \; \mathsf{problem}$

Predictable sequences:

- I call a sequence of random variables x_1, x_2, \ldots predictable if, given \mathcal{H}_{t-1}, x_t is no longer random
- ullet e.g. $a_1,a_2...$ are predictable, $f_1,f_2,...$ are predictable, $r_1,r_2,...$ are not predictable

Matrix/vector notation:

- $\Phi_t = [\phi(a_1), \dots, \phi(a_t)]^{\top} \in \mathbb{R}^{t \times d} = \text{matrix of first } t \text{ feature vectors}$
- ullet $m{r}_t = [r_1, \dots, r_t]^{ op} = ext{vector of first } t ext{ rewards}$
- $\epsilon_t = [\epsilon_1, \dots, \epsilon_t]^{\top} = \text{vector of first } t \text{ noise variables}$
- $f_t = [f_1, \dots, f_t]^{\top} = \text{vector of first } t \text{ predictions}$

Throughout the talk, f_1, f_2, \ldots is a sequence of predictions for the rewards r_1, r_2, \ldots , where each f_t can depend on the history \mathcal{H}_{t-1} .

Throughout the talk, f_1, f_2, \ldots is a sequence of predictions for the rewards r_1, r_2, \ldots , where each f_t can depend on the history \mathcal{H}_{t-1} .

Examples:

• For a fixed θ , we could set $f_t = \phi(a_t)^{\top} \theta$ for each $t \geq 1$ (or $f_t = \Phi_t \theta$ in matrix notation)

Throughout the talk, f_1, f_2, \ldots is a sequence of predictions for the rewards r_1, r_2, \ldots , where each f_t can depend on the history \mathcal{H}_{t-1} .

Examples:

- For a fixed θ , we could set $f_t = \phi(a_t)^{\top} \theta$ for each $t \ge 1$ (or $f_t = \Phi_t \theta$ in matrix notation)
- ullet f_1, f_2, \dots could be a sequence of predictions generated by running an online learning algorithm

Throughout the talk, f_1, f_2, \ldots is a sequence of predictions for the rewards r_1, r_2, \ldots , where each f_t can depend on the history \mathcal{H}_{t-1} .

Examples:

- For a fixed θ , we could set $f_t = \phi(a_t)^{\top} \theta$ for each $t \ge 1$ (or $f_t = \Phi_t \theta$ in matrix notation)
- ullet f_1,f_2,\ldots could be a sequence of predictions generated by running an online learning algorithm
- E.g., $\theta_1, \theta_2, \ldots$ could be a sequence of parameter estimates, and we could set $f_t = \phi(a_t)^\top \theta_t$

Throughout the talk, f_1, f_2, \ldots is a sequence of predictions for the rewards r_1, r_2, \ldots , where each f_t can depend on the history \mathcal{H}_{t-1} .

Examples:

- For a fixed θ , we could set $f_t = \phi(a_t)^{\top} \theta$ for each $t \geq 1$ (or $f_t = \Phi_t \theta$ in matrix notation)
- ullet f_1,f_2,\ldots could be a sequence of predictions generated by running an online learning algorithm
- E.g., $\theta_1, \theta_2, \ldots$ could be a sequence of parameter estimates, and we could set $f_t = \phi(a_t)^\top \theta_t$
- ullet We could choose something boring like $f_t \equiv 0$

Throughout the talk, f_1, f_2, \ldots is a sequence of predictions for the rewards r_1, r_2, \ldots , where each f_t can depend on the history \mathcal{H}_{t-1} .

Examples:

- For a fixed θ , we could set $f_t = \phi(a_t)^{\top} \theta$ for each $t \ge 1$ (or $f_t = \Phi_t \theta$ in matrix notation)
- ullet f_1, f_2, \ldots could be a sequence of predictions generated by running an online learning algorithm
- E.g., $\theta_1, \theta_2, \ldots$ could be a sequence of parameter estimates, and we could set $f_t = \phi(a_t)^\top \theta_t$
- ullet We could choose something boring like $f_t \equiv 0$

Randomised predictions: Later on in the talk, we will consider distributions over sequences of predictions.

ullet f_t will be a random draw from P_t , which is distribution on \mathbb{R}^t

Throughout the talk, f_1, f_2, \ldots is a sequence of predictions for the rewards r_1, r_2, \ldots , where each f_t can depend on the history \mathcal{H}_{t-1} .

Examples:

- For a fixed θ , we could set $f_t = \phi(a_t)^{\top}\theta$ for each $t \geq 1$ (or $f_t = \Phi_t\theta$ in matrix notation)
- ullet f_1, f_2, \ldots could be a sequence of predictions generated by running an online learning algorithm
- E.g., $\theta_1, \theta_2, \ldots$ could be a sequence of parameter estimates, and we could set $f_t = \phi(a_t)^\top \theta_t$
- ullet We could choose something boring like $f_t \equiv 0$

Randomised predictions: Later on in the talk, we will consider distributions over sequences of predictions.

- ullet f_t will be a random draw from P_t , which is distribution on \mathbb{R}^t
- Each P_t can depend on the history \mathcal{H}_{t-1}

Throughout the talk, f_1, f_2, \ldots is a sequence of predictions for the rewards r_1, r_2, \ldots , where each f_t can depend on the history \mathcal{H}_{t-1} .

Examples:

- For a fixed θ , we could set $f_t = \phi(a_t)^{\top} \theta$ for each $t \ge 1$ (or $f_t = \Phi_t \theta$ in matrix notation)
- ullet f_1, f_2, \ldots could be a sequence of predictions generated by running an online learning algorithm
- E.g., $\theta_1, \theta_2, \ldots$ could be a sequence of parameter estimates, and we could set $f_t = \phi(a_t)^\top \theta_t$
- We could choose something boring like $f_t \equiv 0$

Randomised predictions: Later on in the talk, we will consider distributions over sequences of predictions.

- ullet f_t will be a random draw from P_t , which is distribution on \mathbb{R}^t
- Each P_t can depend on the history \mathcal{H}_{t-1}
- If $P_t = \mathcal{N}(\mu_t, T_t)$, μ_t can still be thought of the first t predictions, and T_t can be thought of as the uncertainty associated with the first t predictions

Throughout the talk, f_1, f_2, \ldots is a sequence of predictions for the rewards r_1, r_2, \ldots , where each f_t can depend on the history \mathcal{H}_{t-1} .

Examples:

- For a fixed θ , we could set $f_t = \phi(a_t)^{\top} \theta$ for each $t \geq 1$ (or $f_t = \Phi_t \theta$ in matrix notation)
- ullet f_1, f_2, \ldots could be a sequence of predictions generated by running an online learning algorithm
- E.g., $\theta_1, \theta_2, \ldots$ could be a sequence of parameter estimates, and we could set $f_t = \phi(a_t)^\top \theta_t$
- ullet We could choose something boring like $f_t \equiv 0$

Randomised predictions: Later on in the talk, we will consider distributions over sequences of predictions.

- ullet $oldsymbol{f}_t$ will be a random draw from P_t , which is distribution on \mathbb{R}^t
- Each P_t can depend on the history \mathcal{H}_{t-1}
- If $P_t = \mathcal{N}(\mu_t, T_t)$, μ_t can still be thought of the first t predictions, and T_t can be thought of as the uncertainty associated with the first t predictions
- E.g. suppose $\theta \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ and define P_t to be the induced distribution on $\Phi_t \theta$, so $P_t = \mathcal{N}(\mathbf{0}, \Phi_t \Phi_t^\top)$

Step 1: Construct a collection of non-negative random processes $M_t({m f}_t,{m heta})$ such that:

Step 1: Construct a collection of non-negative random processes $M_t({m f}_t,{m heta})$ such that:

$$\mathbb{E}[M_t(\boldsymbol{f}_t, \boldsymbol{\theta}^*) | \mathcal{H}_{t-1}] \leq M_{t-1}(\boldsymbol{f}_{t-1}, \boldsymbol{\theta}^*)$$

Step 1: Construct a collection of non-negative random processes $M_t({m f}_t, {m heta})$ such that:

$$\mathbb{E}[M_t(\boldsymbol{f}_t, \boldsymbol{\theta}^*) | \mathcal{H}_{t-1}] \leq M_{t-1}(\boldsymbol{f}_{t-1}, \boldsymbol{\theta}^*)$$

If $oldsymbol{ heta}
eq oldsymbol{ heta}^*$, $M_t(oldsymbol{f}_t, oldsymbol{ heta})$ blows up

Step 1: Construct a collection of non-negative random processes $M_t(\boldsymbol{f}_t, \boldsymbol{\theta})$ such that:

$$\mathbb{E}[M_t(\boldsymbol{f}_t, \boldsymbol{\theta}^*) | \mathcal{H}_{t-1}] \leq M_{t-1}(\boldsymbol{f}_{t-1}, \boldsymbol{\theta}^*)$$

If
$$\theta \neq \theta^*$$
, $M_t(f_t, \theta)$ blows up

We want to maximise $M_t({m f}_t, {m heta})$ w.r.t. ${m f}_t$, but the maximiser is not a predictable sequence.

Step 1: Construct a collection of non-negative random processes $M_t(\boldsymbol{f}_t, \boldsymbol{\theta})$ such that:

$$\mathbb{E}[M_t(\boldsymbol{f}_t, \boldsymbol{\theta}^*) | \mathcal{H}_{t-1}] \leq M_{t-1}(\boldsymbol{f}_{t-1}, \boldsymbol{\theta}^*)$$

If
$$\boldsymbol{\theta} \neq \boldsymbol{\theta}^*$$
, $M_t(\boldsymbol{f}_t, \boldsymbol{\theta})$ blows up

We want to maximise $M_t(\boldsymbol{f}_t, \boldsymbol{\theta})$ w.r.t. \boldsymbol{f}_t , but the maximiser is not a predictable sequence.

Step 2: Laplace's method/pseudo-maximisation/method of mixtures

$$\mathbb{E}_{\boldsymbol{f}_t \sim P_t} \left[M_t(\boldsymbol{f}_t, \boldsymbol{\theta}) \right] \approx \max_{\boldsymbol{f}_t} M_t(\boldsymbol{f}_t, \boldsymbol{\theta}).$$

General Plan (Part 2)

Step 3: Use Ville's inequality to determine a threshold level

$$\mathbb{P}\left(\forall t \geq 1 : \mathbb{E}_{\boldsymbol{f}_t \sim P_t} \left[M_t(\boldsymbol{f}_t, \boldsymbol{\theta}^*) \right] \leq 1/\delta \right) \geq 1 - \delta.$$

General Plan (Part 2)

Step 3: Use Ville's inequality to determine a threshold level

$$\mathbb{P}\left(\forall t \geq 1 : \mathbb{E}_{\boldsymbol{f}_t \sim P_t} \left[M_t(\boldsymbol{f}_t, \boldsymbol{\theta}^*) \right] \leq 1/\delta \right) \geq 1 - \delta.$$

Step 4: We define our confidence sets as

$$\Theta_t := \left\{ \boldsymbol{\theta} \in \mathbb{R}^d : \mathbb{E}_{\boldsymbol{f}_t \sim P_t} \left[M_t(\boldsymbol{f}_t, \boldsymbol{\theta}) \right] \le 1/\delta \right\} \cap \left\{ \boldsymbol{\theta} \in \mathbb{R}^d : \|\boldsymbol{\theta}\|_2 \le B \right\}.$$

What Do We Want From $M_t(f_t, \theta^*)$?

We want to construct a collection of supermartingales $M_t(\boldsymbol{f}_t, \boldsymbol{\theta}^*)$ such that:

- ullet $M_t(oldsymbol{f}_t,oldsymbol{ heta}^*)$ is always non-negative
- ullet $\mathbb{E}_{m{f}_t \sim P_t}\left[M_t(m{f}_t, m{ heta}^*)
 ight]$ has a closed-form expression whenever P_t is Gaussian
- $\mathbb{E}_{m{f}_t \sim P_t}\left[M_t(m{f}_t, m{ heta}^*)
 ight] \leq 1/\delta$ is a convex constraint for $m{ heta}^*$

What Do We Want From $M_t(f_t, \theta^*)$?

We want to construct a collection of supermartingales $M_t(\boldsymbol{f}_t, \boldsymbol{\theta}^*)$ such that:

- $M_t(\boldsymbol{f}_t, \boldsymbol{\theta}^*)$ is always non-negative
- $\mathbb{E}_{f_t \sim P_t} \left[M_t(f_t, \boldsymbol{\theta}^*) \right]$ has a closed-form expression whenever P_t is Gaussian
- $\mathbb{E}_{m{f}_t \sim P_t}\left[M_t(m{f}_t, m{ heta}^*)
 ight] \leq 1/\delta$ is a convex constraint for $m{ heta}^*$

Look for $M_t(\boldsymbol{f}_t, \boldsymbol{\theta}^*)$ in the form

$$M_t(\boldsymbol{f}_t, \boldsymbol{\theta}^*) = \exp\left(\sum_{k=1}^t \operatorname{quad}(f_k, \phi(a_k)^\top \boldsymbol{\theta}^*)\right) = \prod_{k=1}^t \exp\left(\operatorname{quad}(f_k, \phi(a_t)^\top \boldsymbol{\theta}^*)\right)$$

What Do We Want From $M_t(f_t, \theta^*)$?

We want to construct a collection of supermartingales $M_t(\boldsymbol{f}_t, \boldsymbol{\theta}^*)$ such that:

- ullet $M_t(oldsymbol{f}_t,oldsymbol{ heta}^*)$ is always non-negative
- $\mathbb{E}_{m{f}_t \sim P_t}\left[M_t(m{f}_t, m{ heta}^*)
 ight]$ has a closed-form expression whenever P_t is Gaussian
- $\mathbb{E}_{m{f}_t \sim P_t}\left[M_t(m{f}_t, m{ heta}^*)
 ight] \leq 1/\delta$ is a convex constraint for $m{ heta}^*$

Look for $M_t(\boldsymbol{f}_t, \boldsymbol{\theta}^*)$ in the form

$$M_t(\boldsymbol{f}_t, \boldsymbol{\theta}^*) = \exp\left(\sum_{k=1}^t \operatorname{quad}(f_k, \phi(a_k)^\top \boldsymbol{\theta}^*)\right) = \prod_{k=1}^t \exp\left(\operatorname{quad}(f_k, \phi(a_t)^\top \boldsymbol{\theta}^*)\right)$$

This is a supermartingale if, for all $t \ge 1$,

$$\mathbb{E}\left[\exp\left(\operatorname{quad}(f_t,\phi(a_t)^{\top}\boldsymbol{\theta}^*)\right)|\mathcal{H}_{t-1}\right] \leq 1.$$

Since $\epsilon_1,\epsilon_2,\ldots$ are (conditionally) σ -sub-Gaussian, we know that for any predictable $\lambda_1,\lambda_2,\ldots$,

$$\mathbb{E}\left[\exp(\lambda_t(f_t - \phi(a_t)^\top \boldsymbol{\theta}^*) \epsilon_t) | \mathcal{H}_{t-1}\right] \leq \exp\left(\frac{\sigma^2 \lambda_t^2 (f_t - \phi(a_t)^\top \boldsymbol{\theta}^*)^2}{2}\right).$$

Since $\epsilon_1,\epsilon_2,\ldots$ are (conditionally) σ -sub-Gaussian, we know that for any predictable $\lambda_1,\lambda_2,\ldots$,

$$\mathbb{E}\left[\exp(\lambda_t(f_t - \phi(a_t)^\top \boldsymbol{\theta}^*)\epsilon_t)|\mathcal{H}_{t-1}\right] \leq \exp\left(\frac{\sigma^2 \lambda_t^2 (f_t - \phi(a_t)^\top \boldsymbol{\theta}^*)^2}{2}\right).$$

Therefore, we know that

$$\mathbb{E}\left[\exp\left(\lambda_t(f_t - \phi(a_t)^{\top}\boldsymbol{\theta}^*)\boldsymbol{\epsilon}_t - \frac{\sigma^2\lambda_t^2(f_t - \phi(a_t)^{\top}\boldsymbol{\theta}^*)^2}{2}\right)|\mathcal{H}_{t-1}\right] \leq 1.$$
 (1)

Since $\epsilon_1,\epsilon_2,\ldots$ are (conditionally) σ -sub-Gaussian, we know that for any predictable $\lambda_1,\lambda_2,\ldots$,

$$\mathbb{E}\left[\exp(\lambda_t(f_t - \phi(a_t)^\top \boldsymbol{\theta}^*)\epsilon_t)|\mathcal{H}_{t-1}\right] \le \exp\left(\frac{\sigma^2 \lambda_t^2 (f_t - \phi(a_t)^\top \boldsymbol{\theta}^*)^2}{2}\right).$$

Therefore, we know that

$$\mathbb{E}\left[\exp\left(\lambda_t(f_t - \phi(a_t)^{\top}\boldsymbol{\theta}^*)\epsilon_t - \frac{\sigma^2\lambda_t^2(f_t - \phi(a_t)^{\top}\boldsymbol{\theta}^*)^2}{2}\right)|\mathcal{H}_{t-1}\right] \le 1.$$
(1)

Using $\epsilon_t = r_t - \phi(a_t)^{\top} \boldsymbol{\theta}^*$, the $\exp(\cdots)$ term in (1) can be re-written as

$$\exp\left(\frac{\lambda_t}{2}(\phi(a_t)^{\top}\boldsymbol{\theta}^* - r_t)^2 - \frac{\lambda_t}{2}(f_t - r_t)^2 + \frac{1}{2}(\lambda_t - \sigma^2 \lambda_t^2)(f_t - \phi(a_t)^{\top}\boldsymbol{\theta}^*)^2\right).$$

Since $\epsilon_1,\epsilon_2,\ldots$ are (conditionally) σ -sub-Gaussian, we know that for any predictable $\lambda_1,\lambda_2,\ldots$,

$$\mathbb{E}\left[\exp(\lambda_t(f_t - \phi(a_t)^\top \boldsymbol{\theta}^*)\epsilon_t)|\mathcal{H}_{t-1}\right] \leq \exp\left(\frac{\sigma^2 \lambda_t^2 (f_t - \phi(a_t)^\top \boldsymbol{\theta}^*)^2}{2}\right).$$

Therefore, we know that

$$\mathbb{E}\left[\exp\left(\lambda_t(f_t - \phi(a_t)^{\top}\boldsymbol{\theta}^*)\boldsymbol{\epsilon}_t - \frac{\sigma^2\lambda_t^2(f_t - \phi(a_t)^{\top}\boldsymbol{\theta}^*)^2}{2}\right)|\mathcal{H}_{t-1}\right] \leq 1.$$
(1)

Using $\epsilon_t = r_t - \phi(a_t)^{\top} \boldsymbol{\theta}^*$, the $\exp(\cdots)$ term in (1) can be re-written as

$$\exp\left(\frac{\lambda_t}{2}(\phi(a_t)^{\top}\boldsymbol{\theta}^* - r_t)^2 - \frac{\lambda_t}{2}(f_t - r_t)^2 + \frac{1}{2}(\lambda_t - \sigma^2 \lambda_t^2)(f_t - \phi(a_t)^{\top}\boldsymbol{\theta}^*)^2\right).$$

Setting $\lambda_t \equiv 1/\sigma^2$, this becomes

$$\exp\left(\frac{1}{2\sigma^2}(\phi(a_t)^\top \boldsymbol{\theta}^* - r_t)^2 - \frac{1}{2\sigma^2}(f_t - r_t)^2\right).$$

Multiplying the $\exp(\mathrm{quad}(\cdots))$ terms together, we obtain

$$\begin{split} M_t(\boldsymbol{f}_t, \boldsymbol{\theta}^*) &= \prod_{k=1}^t \exp\left(\frac{1}{2\sigma^2} (\phi(a_t)^\top \boldsymbol{\theta}^* - r_t)^2 - \frac{1}{2\sigma^2} (f_t - r_t)^2\right) \\ &= \exp\left(\frac{1}{2\sigma^2} \left\|\Phi_t \boldsymbol{\theta}^* - \boldsymbol{r}_t\right\|_2^2 - \frac{1}{2\sigma^2} \left\|\boldsymbol{f}_t - \boldsymbol{r}_t\right\|_2^2\right). \end{split}$$

Multiplying the $\exp(\mathrm{quad}(\cdots))$ terms together, we obtain

$$M_t(\boldsymbol{f}_t, \boldsymbol{\theta}^*) = \prod_{k=1}^t \exp\left(\frac{1}{2\sigma^2} (\phi(a_t)^\top \boldsymbol{\theta}^* - r_t)^2 - \frac{1}{2\sigma^2} (f_t - r_t)^2\right)$$
$$= \exp\left(\frac{1}{2\sigma^2} \|\Phi_t \boldsymbol{\theta}^* - \boldsymbol{r}_t\|_2^2 - \frac{1}{2\sigma^2} \|\boldsymbol{f}_t - \boldsymbol{r}_t\|_2^2\right).$$

Closed-form integration. $M_t(f_t, \theta^*)$ is an unnormalised Gaussian density function (with mean r_t and covariance $\sigma^2 I$), so we can use known tricks for integrating products of Gaussian densities.

Multiplying the $\exp(\mathrm{quad}(\cdots))$ terms together, we obtain

$$M_t(\boldsymbol{f}_t, \boldsymbol{\theta}^*) = \prod_{k=1}^t \exp\left(\frac{1}{2\sigma^2} (\phi(a_t)^\top \boldsymbol{\theta}^* - r_t)^2 - \frac{1}{2\sigma^2} (f_t - r_t)^2\right)$$
$$= \exp\left(\frac{1}{2\sigma^2} \|\Phi_t \boldsymbol{\theta}^* - \boldsymbol{r}_t\|_2^2 - \frac{1}{2\sigma^2} \|\boldsymbol{f}_t - \boldsymbol{r}_t\|_2^2\right).$$

Closed-form integration. $M_t(f_t, \theta^*)$ is an unnormalised Gaussian density function (with mean r_t and covariance $\sigma^2 I$), so we can use known tricks for integrating products of Gaussian densities.

Convex constraint. $M_t(\boldsymbol{f}_t, \boldsymbol{\theta}^*)$ is the composition of $\exp(\cdot)$ and a convex function of $\boldsymbol{\theta}^*$, which means $\mathbb{E}_{\boldsymbol{f}_t \sim P_t} \left[M_t(\boldsymbol{f}_t, \boldsymbol{\theta}^*) \right] \leq 1/\delta$ is a convex constraint for $\boldsymbol{\theta}^*$.

Multiplying the $\exp(\mathrm{quad}(\cdots))$ terms together, we obtain

$$M_t(\boldsymbol{f}_t, \boldsymbol{\theta}^*) = \prod_{k=1}^t \exp\left(\frac{1}{2\sigma^2} (\phi(a_t)^\top \boldsymbol{\theta}^* - r_t)^2 - \frac{1}{2\sigma^2} (f_t - r_t)^2\right)$$
$$= \exp\left(\frac{1}{2\sigma^2} \|\Phi_t \boldsymbol{\theta}^* - \boldsymbol{r}_t\|_2^2 - \frac{1}{2\sigma^2} \|\boldsymbol{f}_t - \boldsymbol{r}_t\|_2^2\right).$$

Closed-form integration. $M_t(f_t, \theta^*)$ is an unnormalised Gaussian density function (with mean r_t and covariance $\sigma^2 I$), so we can use known tricks for integrating products of Gaussian densities.

Convex constraint. $M_t(\boldsymbol{f}_t, \boldsymbol{\theta}^*)$ is the composition of $\exp(\cdot)$ and a convex function of $\boldsymbol{\theta}^*$, which means $\mathbb{E}_{\boldsymbol{f}_t \sim P_t} \left[M_t(\boldsymbol{f}_t, \boldsymbol{\theta}^*) \right] \leq 1/\delta$ is a convex constraint for $\boldsymbol{\theta}^*$.

Blowing up when $\theta \neq \theta^*$. If f_1, f_2, \ldots predicts the rewards better than $\phi(a_1)^\top \theta, \phi(a_2)^\top \theta, \ldots$, then $M_t(f_t, \theta)$ will grow exponentially with t (in expectation).

Motivation for Mixing

We would like to maximise $M_t(\boldsymbol{f}_t, \boldsymbol{\theta}^*)$ w.r.t. \boldsymbol{f}_t , but the maximiser is not a predictable sequence.

$$\underset{\boldsymbol{f}_{t} \in \mathbb{R}^{t}}{\operatorname{argmax}} \left\{ \exp \left(\frac{1}{2\sigma^{2}} \left\| \Phi_{t} \boldsymbol{\theta}^{*} - \boldsymbol{r}_{t} \right\|_{2}^{2} - \frac{1}{2\sigma^{2}} \left\| \boldsymbol{f}_{t} - \boldsymbol{r}_{t} \right\|_{2}^{2} \right) \right\} = \boldsymbol{r}_{t}.$$

Motivation for Mixing

We would like to maximise $M_t(f_t, \theta^*)$ w.r.t. f_t , but the maximiser is not a predictable sequence.

$$\underset{\boldsymbol{f}_{t} \in \mathbb{R}^{t}}{\operatorname{argmax}} \left\{ \exp \left(\frac{1}{2\sigma^{2}} \left\| \Phi_{t} \boldsymbol{\theta}^{*} - \boldsymbol{r}_{t} \right\|_{2}^{2} - \frac{1}{2\sigma^{2}} \left\| \boldsymbol{f}_{t} - \boldsymbol{r}_{t} \right\|_{2}^{2} \right) \right\} = \boldsymbol{r}_{t}.$$

For a function g(x) with a minimiser x^* , Laplace's asymptotic formula tells us that,

$$\int_{-\infty}^{\infty} \exp(-\lambda g(x)) dx \approx \int_{-\infty}^{\infty} \exp\left(-\lambda g(x^*) - \frac{\lambda}{2} g''(x^*)(x - x^*)^2\right) dx$$
$$= \exp(-\lambda g(x^*)) \sqrt{\frac{2\pi}{g''(x^*)}} = \max_{x} \left\{ \exp(-\lambda g(x)) \right\} \sqrt{\frac{2\pi}{g''(x^*)}}$$

Motivation for Mixing

We would like to maximise $M_t(f_t, \theta^*)$ w.r.t. f_t , but the maximiser is not a predictable sequence.

$$\underset{\boldsymbol{f}_{t} \in \mathbb{R}^{t}}{\operatorname{argmax}} \left\{ \exp \left(\frac{1}{2\sigma^{2}} \left\| \Phi_{t} \boldsymbol{\theta}^{*} - \boldsymbol{r}_{t} \right\|_{2}^{2} - \frac{1}{2\sigma^{2}} \left\| \boldsymbol{f}_{t} - \boldsymbol{r}_{t} \right\|_{2}^{2} \right) \right\} = \boldsymbol{r}_{t}.$$

For a function g(x) with a minimiser x^* , Laplace's asymptotic formula tells us that,

$$\begin{split} \int_{-\infty}^{\infty} \exp(-\lambda g(x)) \mathrm{d}x &\approx \int_{-\infty}^{\infty} \exp\left(-\lambda g(x^*) - \frac{\lambda}{2} g''(x^*)(x - x^*)^2\right) \mathrm{d}x \\ &= \exp(-\lambda g(x^*)) \sqrt{\frac{2\pi}{g''(x^*)}} = \max_{x} \left\{ \exp(-\lambda g(x)) \right\} \sqrt{\frac{2\pi}{g''(x^*)}} \end{split}$$

This suggests that we can perform "pseudo-maximisation" w.r.t. \boldsymbol{f}_t via integration w.r.t. a (probability) measure, i.e.

$$\mathbb{E}_{\boldsymbol{f}_{t} \sim P_{t}}\left[\exp\left(\frac{1}{2\sigma^{2}}\left\|\boldsymbol{\Phi}_{t}\boldsymbol{\theta}^{*}-\boldsymbol{r}_{t}\right\|_{2}^{2}-\frac{1}{2\sigma^{2}}\left\|\boldsymbol{f}_{t}-\boldsymbol{r}_{t}\right\|_{2}^{2}\right)\right] \approx \max_{\boldsymbol{f}_{t}}\left\{\exp\left(\frac{1}{2\sigma^{2}}\left\|\boldsymbol{\Phi}_{t}\boldsymbol{\theta}^{*}-\boldsymbol{r}_{t}\right\|_{2}^{2}-\frac{1}{2\sigma^{2}}\left\|\boldsymbol{f}_{t}-\boldsymbol{r}_{t}\right\|_{2}^{2}\right)\right\}$$

Which Mixture Distributions Are Allowed?

We can choose any sequence of mixture distributions as long as $\mathbb{E}_{f_t \sim P_t}\left[M_t(f_t, \pmb{\theta}^*)\right]$ is a supermartingale, i.e.

$$\mathbb{E}\left[\mathbb{E}_{\boldsymbol{f}_{t} \sim P_{t}}\left[M_{t}(\boldsymbol{f}_{t}, \boldsymbol{\theta}^{*})\right] | \mathcal{H}_{t-1}\right] \leq \mathbb{E}_{\boldsymbol{f}_{t-1} \sim P_{t-1}}\left[M_{t-1}(\boldsymbol{f}_{t-1}, \boldsymbol{\theta}^{*})\right].$$

Which Mixture Distributions Are Allowed?

We can choose any sequence of mixture distributions as long as $\mathbb{E}_{f_t \sim P_t} \left[M_t(f_t, \boldsymbol{\theta}^*) \right]$ is a supermartingale, i.e.

$$\mathbb{E}\left[\mathbb{E}_{\boldsymbol{f}_{t} \sim P_{t}}\left[M_{t}(\boldsymbol{f}_{t}, \boldsymbol{\theta}^{*})\right] | \mathcal{H}_{t-1}\right] \leq \mathbb{E}_{\boldsymbol{f}_{t-1} \sim P_{t-1}}\left[M_{t-1}(\boldsymbol{f}_{t-1}, \boldsymbol{\theta}^{*})\right].$$

Suppose that P_1, P_2, \ldots satisfies

- 1. P_t depends on only the history \mathcal{H}_{t-1} (and not the future $r_t, a_{t+1}, r_{t+1}, \dots$)
- 2. $P_t(\boldsymbol{f}_t) = p_t(f_t|\boldsymbol{f}_{t-1})P_{t-1}(\boldsymbol{f}_{t-1})$

Which Mixture Distributions Are Allowed?

We can choose any sequence of mixture distributions as long as $\mathbb{E}_{f_t \sim P_t}\left[M_t(f_t, \theta^*)\right]$ is a supermartingale, i.e.

$$\mathbb{E}\left[\mathbb{E}_{\boldsymbol{f}_{t} \sim P_{t}}\left[M_{t}(\boldsymbol{f}_{t}, \boldsymbol{\theta}^{*})\right] | \mathcal{H}_{t-1}\right] \leq \mathbb{E}_{\boldsymbol{f}_{t-1} \sim P_{t-1}}\left[M_{t-1}(\boldsymbol{f}_{t-1}, \boldsymbol{\theta}^{*})\right].$$

Suppose that P_1, P_2, \ldots satisfies

- 1. P_t depends on only the history \mathcal{H}_{t-1} (and not the future $r_t, a_{t+1}, r_{t+1}, \dots$)
- 2. $P_t(\boldsymbol{f}_t) = p_t(f_t|\boldsymbol{f}_{t-1})P_{t-1}(\boldsymbol{f}_{t-1})$

In this case, we have

$$\begin{split} \mathbb{E}\left[\mathbb{E}_{\boldsymbol{f}_{t}\sim P_{t}}\left[M_{t}(\boldsymbol{f}_{t},\boldsymbol{\theta}^{*})\right]|\mathcal{H}_{t-1}\right] &= \mathbb{E}_{\boldsymbol{f}_{t}\sim P_{t}}\left[\mathbb{E}\left[M_{t}(\boldsymbol{f}_{t},\boldsymbol{\theta}^{*})|\mathcal{H}_{t-1}\right]\right] & (1.) \\ &\leq \mathbb{E}_{\boldsymbol{f}_{t}\sim P_{t}}\left[M_{t-1}(\boldsymbol{f}_{t-1},\boldsymbol{\theta}^{*})\right] & (M_{t} \text{ is a supermartingale}) \\ &= \mathbb{E}_{\boldsymbol{f}_{t-1}\sim P_{t-1}}\left[M_{t-1}(\boldsymbol{f}_{t-1},\boldsymbol{\theta}^{*})\right] & (2.) \end{split}$$

Gaussian Mixture Distributions

A sequence $P_1=\mathcal{N}(\pmb{\mu}_1,\pmb{T}_1), P_2=\mathcal{N}(\pmb{\mu}_2,\pmb{T}_2),\dots$ satisfies 1. and 2. if

$$oldsymbol{\mu}_t = egin{bmatrix} ert \ oldsymbol{\mu}_{t-1} \ ert \ oldsymbol{\mu}_t \end{bmatrix}, \quad oldsymbol{T}_t = egin{bmatrix} & T_{t-1} \ T_{t-1} \ \hline T_1 & \cdots & T_{t-1} \ T_t \end{bmatrix},$$

Each new element μ_t and row/column T_1, \ldots, T_t can depend on the history \mathcal{H}_{t-1} .

Gaussian Mixture Distributions

A sequence $P_1=\mathcal{N}(\boldsymbol{\mu}_1,\boldsymbol{T}_1), P_2=\mathcal{N}(\boldsymbol{\mu}_2,\boldsymbol{T}_2),\ldots$ satisfies 1. and 2. if

$$oldsymbol{\mu}_t = egin{bmatrix} ert \ oldsymbol{\mu}_{t-1} \ ert \ oldsymbol{\mu}_t \end{bmatrix}, \quad oldsymbol{T}_t = egin{bmatrix} & T_{t-1} \ T_{t-1} \ \hline T_1 & \cdots & T_{t-1} \ T_t \end{bmatrix},$$

Each new element μ_t and row/column T_1, \ldots, T_t can depend on the history \mathcal{H}_{t-1} .

With $P_t = \mathcal{N}(\boldsymbol{\mu}_t, \boldsymbol{T}_t)$, the martingale mixture is

$$\mathbb{E}_{\boldsymbol{f}_{t} \sim \mathcal{N}(\boldsymbol{\mu}_{t}, \boldsymbol{T}_{t})} \left[M_{t}(\boldsymbol{f}_{t}, \boldsymbol{\theta}^{*}) \right] = \frac{1}{\sqrt{\det(\boldsymbol{I} + \boldsymbol{T}_{t}/\sigma^{2})}} \exp\left(\frac{1}{2\sigma^{2}} \|\Phi_{t}\boldsymbol{\theta}^{*} - \boldsymbol{r}_{t}\|_{2}^{2} - \frac{1}{2\sigma^{2}} \|\boldsymbol{\mu}_{t} - \boldsymbol{r}_{t}\|_{(\boldsymbol{I} + \boldsymbol{T}_{t}/\sigma^{2})^{-1}}^{2} \right).$$

The constraint $\mathbb{E}_{f_t \sim \mathcal{N}(\mu_t, T_t)} \left[M_t(f_t, \theta^*) \right] \leq 1/\delta$ can be rearranged into

$$\|\Phi_t \boldsymbol{\theta}^* - \boldsymbol{r}_t\|_2^2 \leq (\boldsymbol{\mu}_t - \boldsymbol{r}_t)^\top \left(\boldsymbol{I} + \frac{\boldsymbol{T}_t}{\sigma^2}\right)^{-1} (\boldsymbol{\mu}_t - \boldsymbol{r}_t) + \sigma^2 \ln \left(\det \left(\boldsymbol{I} + \frac{\boldsymbol{T}_t}{\sigma^2}\right)\right) + 2\sigma^2 \ln(1/\delta).$$

The constraint $\mathbb{E}_{f_t \sim \mathcal{N}(\mu_t, T_t)} [M_t(f_t, \theta^*)] \leq 1/\delta$ can be rearranged into

$$\|\Phi_t \boldsymbol{\theta}^* - \boldsymbol{r}_t\|_2^2 \leq (\boldsymbol{\mu}_t - \boldsymbol{r}_t)^\top \left(\boldsymbol{I} + \frac{\boldsymbol{T}_t}{\sigma^2}\right)^{-1} (\boldsymbol{\mu}_t - \boldsymbol{r}_t) + \sigma^2 \ln \left(\det \left(\boldsymbol{I} + \frac{\boldsymbol{T}_t}{\sigma^2}\right)\right) + 2\sigma^2 \ln(1/\delta).$$

Standard mixture distributions: $P_t = \mathcal{N}(\mathbf{0}, c\Phi_t \Phi_t^\top)$

$$\|\Phi_t \boldsymbol{\theta}^* - \boldsymbol{r}_t\|_2^2 \le \boldsymbol{r}_t^\top \left(\boldsymbol{I} + \frac{c\Phi_t \Phi_t^\top}{\sigma^2} \right)^{-1} \boldsymbol{r}_t + \sigma^2 \ln \left(\det \left(\boldsymbol{I} + \frac{c\Phi_t \Phi_t^\top}{\sigma^2} \right) \right) + 2\sigma^2 \ln(1/\delta) =: R_{\text{MM},t}^2.$$

The constraint $\mathbb{E}_{f_t \sim \mathcal{N}(\mu_t, T_t)} [M_t(f_t, \theta^*)] \leq 1/\delta$ can be rearranged into

$$\|\Phi_t \boldsymbol{\theta}^* - \boldsymbol{r}_t\|_2^2 \leq (\boldsymbol{\mu}_t - \boldsymbol{r}_t)^\top \left(\boldsymbol{I} + \frac{\boldsymbol{T}_t}{\sigma^2}\right)^{-1} (\boldsymbol{\mu}_t - \boldsymbol{r}_t) + \sigma^2 \ln \left(\det \left(\boldsymbol{I} + \frac{\boldsymbol{T}_t}{\sigma^2}\right)\right) + 2\sigma^2 \ln(1/\delta).$$

Standard mixture distributions: $P_t = \mathcal{N}(\mathbf{0}, c\Phi_t \Phi_t^\top)$

$$\|\Phi_t \boldsymbol{\theta}^* - \boldsymbol{r}_t\|_2^2 \le \boldsymbol{r}_t^\top \left(\boldsymbol{I} + \frac{c\Phi_t \Phi_t^\top}{\sigma^2} \right)^{-1} \boldsymbol{r}_t + \sigma^2 \ln \left(\det \left(\boldsymbol{I} + \frac{c\Phi_t \Phi_t^\top}{\sigma^2} \right) \right) + 2\sigma^2 \ln(1/\delta) =: R_{\text{MM},t}^2.$$

On the one hand...

- $\mathcal{N}(\mathbf{0},c\Phi_t\Phi_t^{\top})$ is good enough to give us tighter confidence sets/bounds
- $\bullet \ c\Phi_t\Phi_t^\top$ is rank d , so $R^2_{\mathrm{MM},t}$ can be computed relatively cheaply

The constraint $\mathbb{E}_{f_t \sim \mathcal{N}(\mu_t, T_t)} \left[M_t(f_t, \theta^*) \right] \leq 1/\delta$ can be rearranged into

$$\|\Phi_t \boldsymbol{\theta}^* - \boldsymbol{r}_t\|_2^2 \le (\boldsymbol{\mu}_t - \boldsymbol{r}_t)^\top \left(\boldsymbol{I} + \frac{\boldsymbol{T}_t}{\sigma^2} \right)^{-1} (\boldsymbol{\mu}_t - \boldsymbol{r}_t) + \sigma^2 \ln \left(\det \left(\boldsymbol{I} + \frac{\boldsymbol{T}_t}{\sigma^2} \right) \right) + 2\sigma^2 \ln(1/\delta).$$

Standard mixture distributions: $P_t = \mathcal{N}(\mathbf{0}, c\Phi_t \Phi_t^\top)$

$$\|\Phi_t \boldsymbol{\theta}^* - \boldsymbol{r}_t\|_2^2 \le \boldsymbol{r}_t^\top \left(\boldsymbol{I} + \frac{c\Phi_t \Phi_t^\top}{\sigma^2} \right)^{-1} \boldsymbol{r}_t + \sigma^2 \ln \left(\det \left(\boldsymbol{I} + \frac{c\Phi_t \Phi_t^\top}{\sigma^2} \right) \right) + 2\sigma^2 \ln(1/\delta) =: R_{\text{MM},t}^2.$$

On the one hand...

- $\mathcal{N}(\mathbf{0},c\Phi_t\Phi_t^{\top})$ is good enough to give us tighter confidence sets/bounds
- $\bullet \ c\Phi_t\Phi_t^\top$ is rank d , so $R^2_{\mathrm{MM},t}$ can be computed relatively cheaply

On the other hand, $\mu_t=0$ seems bit a silly.

Using our martingale tail bound, we have

$$\|\Phi_t \boldsymbol{\theta}^* - \boldsymbol{r}_t\|_2 \le R_{\mathrm{MM},t},$$

This means that θ^* lies within the set*

$$\{\boldsymbol{\theta} \in \mathbb{R}^d : \|\Phi_t \boldsymbol{\theta} - \boldsymbol{r}_t\|_2 \le R_{\mathrm{MM},t}\}.$$

^{*} this set can be re-written as $\{m{\theta} \in \mathbb{R}^d: \|m{\theta} - \widehat{m{\theta}}_t\|_{\Phi_t^{\top}\Phi_t} \leq \tilde{R}_t\}$, where $\widehat{m{\theta}}_t = \Phi_t^{\dagger} r_t$ and \tilde{R}_t is some other radius quantity

Using our martingale tail bound, we have

$$\|\Phi_t \boldsymbol{\theta}^* - \boldsymbol{r}_t\|_2 \le R_{\mathrm{MM},t},$$

This means that θ^* lies within the set*

$$\{\boldsymbol{\theta} \in \mathbb{R}^d : \|\Phi_t \boldsymbol{\theta} - \boldsymbol{r}_t\|_2 \le R_{\mathrm{MM},t}\}.$$

Incorporating the smoothness assumption, we obtain

$$\Theta_t = \{ \boldsymbol{\theta} \in \mathbb{R}^d : \|\Phi_t \boldsymbol{\theta} - \boldsymbol{r}_t\|_2 \le R_{\text{MM},t}, \|\boldsymbol{\theta}\|_2 \le B \}.$$

^{*} this set can be re-written as $\{m{\theta} \in \mathbb{R}^d: \|m{\theta} - \widehat{m{\theta}}_t\|_{\Phi_t^{\top}\Phi_t} \leq \tilde{R}_t\}$, where $\widehat{m{\theta}}_t = \Phi_t^{\dagger} r_t$ and \tilde{R}_t is some other radius quantity

Confidence Sets For Linear Bandits (Single Ellipsoid)

By taking a weighted (by $\alpha>0$) sum, we obtain a single quadratic constraint for $\pmb{\theta}^*$

$$\|\Phi_t \theta^* - r_t\|_2^2 + \alpha \|\theta^*\|_2^2 \le R_{\text{MM},t}^2 + \alpha B^2,$$

Confidence Sets For Linear Bandits (Single Ellipsoid)

By taking a weighted (by $\alpha>0$) sum, we obtain a single quadratic constraint for θ^*

$$\|\Phi_t \boldsymbol{\theta}^* - r_t\|_2^2 + \alpha \|\boldsymbol{\theta}^*\|_2^2 \le R_{\text{MM},t}^2 + \alpha B^2,$$

By completing the square on the LHS, this constraint can be re-written as*

$$\|\boldsymbol{\theta}^* - \widehat{\boldsymbol{\theta}}_{\alpha,t}\|_{(\Phi_t^{\top} \Phi_t + \alpha \boldsymbol{I})} \le R_{\text{AMM},t}$$

* where
$$\hat{\boldsymbol{\theta}}_{\alpha,t} = (\boldsymbol{\Phi}_t^{\top} \boldsymbol{\Phi}_t + \alpha \boldsymbol{I})^{-1} \boldsymbol{\Phi}_t^{\top} \boldsymbol{r}_t, \qquad R_{\mathrm{AMM},t}^2 = R_{\mathrm{MM},t}^2 + \alpha \boldsymbol{B}^2 - \boldsymbol{r}_t^{\top} \boldsymbol{r}_t + \boldsymbol{r}_t^{\top} \boldsymbol{\Phi}_t \left(\boldsymbol{\Phi}_t^{\top} \boldsymbol{\Phi}_t + \alpha \boldsymbol{I}\right)^{-1} \boldsymbol{\Phi}_t^{\top} \boldsymbol{r}_t$$

Confidence Sets For Linear Bandits (Single Ellipsoid)

By taking a weighted (by $\alpha>0$) sum, we obtain a single quadratic constraint for θ^*

$$\|\Phi_t \boldsymbol{\theta}^* - r_t\|_2^2 + \alpha \|\boldsymbol{\theta}^*\|_2^2 \le R_{\text{MM},t}^2 + \alpha B^2,$$

By completing the square on the LHS, this constraint can be re-written as*

$$\|\boldsymbol{\theta}^* - \widehat{\boldsymbol{\theta}}_{\alpha,t}\|_{(\Phi_t^\top \Phi_t + \alpha \boldsymbol{I})} \le R_{\text{AMM},t}$$

This means that $heta^*$ lies within the ellipsoid

$$\Theta_t^{\alpha} = \{ \boldsymbol{\theta} \in \mathbb{R}^d : \|\boldsymbol{\theta} - \widehat{\boldsymbol{\theta}}_{\alpha,t}\|_{(\Phi_t^{\top} \Phi_t + \alpha \boldsymbol{I})} \le R_{\text{AMM},t} \}.$$

* where
$$\hat{\boldsymbol{\theta}}_{\alpha,t} = (\boldsymbol{\Phi}_t^{\intercal} \boldsymbol{\Phi}_t + \alpha \boldsymbol{I})^{-1} \boldsymbol{\Phi}_t^{\intercal} \boldsymbol{r}_t, \qquad R_{\mathrm{AMM},t}^2 = R_{\mathrm{MM},t}^2 + \alpha \boldsymbol{B}^2 - \boldsymbol{r}_t^{\intercal} \boldsymbol{r}_t + \boldsymbol{r}_t^{\intercal} \boldsymbol{\Phi}_t \left(\boldsymbol{\Phi}_t^{\intercal} \boldsymbol{\Phi}_t + \alpha \boldsymbol{I}\right)^{-1} \boldsymbol{\Phi}_t^{\intercal} \boldsymbol{r}_t$$

Computing and Maximising Confidence Bounds

Convex Martingale Mixture UCB

The UCB for our double ellipsoid confidence set is

$$\begin{split} \mathrm{UCB}_{\Theta_t}(a) &= \max_{\boldsymbol{\theta} \in \mathbb{R}^d} \ \phi(a)^\top \boldsymbol{\theta} \\ &\quad \text{s.t.} \ \|\boldsymbol{\Phi}_t \boldsymbol{\theta} - \boldsymbol{r}_t\|_2 \leq R_{\mathrm{MM},t} \\ &\quad \text{and} \ \|\boldsymbol{\theta}\|_2 \leq B \\ &= \ \phi(a)^\top \boldsymbol{\theta}_{\mathrm{UCB}}. \end{split}$$

Convex Martingale Mixture UCB

The UCB for our double ellipsoid confidence set is

$$\begin{aligned} \mathrm{UCB}_{\Theta_t}(a) &= \max_{\boldsymbol{\theta} \in \mathbb{R}^d} \ \phi(a)^\top \boldsymbol{\theta} \\ &\quad \text{s.t.} \ \|\boldsymbol{\Phi}_t \boldsymbol{\theta} - \boldsymbol{r}_t\|_2 \leq R_{\mathrm{MM},t} \\ &\quad \text{and} \ \|\boldsymbol{\theta}\|_2 \leq B \\ &= \ \phi(a)^\top \boldsymbol{\theta}_{\mathrm{UCB}}. \end{aligned}$$

 ${\rm UCB}_{\Theta_t}(a)$ can be computed in $\mathcal{O}(d^3)$ time complexity via interior point methods.

Convex Martingale Mixture UCB

The UCB for our double ellipsoid confidence set is

$$\begin{aligned} \mathrm{UCB}_{\Theta_t}(a) &= \max_{\boldsymbol{\theta} \in \mathbb{R}^d} \ \phi(a)^\top \boldsymbol{\theta} \\ &\quad \text{s.t.} \ \| \Phi_t \boldsymbol{\theta} - \boldsymbol{r}_t \|_2 \leq R_{\mathrm{MM},t} \\ &\quad \text{and} \ \| \boldsymbol{\theta} \|_2 \leq B \\ &= \ \phi(a)^\top \boldsymbol{\theta}_{\mathrm{UCB}}. \end{aligned}$$

 $\mathrm{UCB}_{\Theta_t}(a)$ can be computed in $\mathcal{O}(d^3)$ time complexity via interior point methods.

We call LinUCB with these confidence sets/bounds Convex Martingale Mixture (CMM-)UCB.

Analytic Martingale Mixture UCB

The UCB for our single ellipsoid confidence set is

$$\begin{split} \mathrm{UCB}_{\Theta^{\alpha}_t}(a) \; &= \; \max_{\pmb{\theta} \in \mathbb{R}^d} \; \; \phi(a)^{\top} \pmb{\theta} \\ & \text{s.t. } \| \pmb{\theta} - \widehat{\pmb{\theta}}_{\alpha,t} \|_{(\Phi^{\top}_t \Phi_t + \alpha I)}^2 \leq R_{\mathrm{AMM},t}^2. \end{split}$$

Analytic Martingale Mixture UCB

The UCB for our single ellipsoid confidence set is

$$\begin{aligned} \mathrm{UCB}_{\Theta^{\alpha}_{t}}(a) &= \max_{\boldsymbol{\theta} \in \mathbb{R}^{d}} \ \phi(a)^{\top} \boldsymbol{\theta} \\ & \text{s.t. } \|\boldsymbol{\theta} - \widehat{\boldsymbol{\theta}}_{\alpha,t}\|_{(\Phi^{\top}_{t} \Phi_{t} + \alpha \boldsymbol{I})}^{2} \leq R_{\mathrm{AMM},t}^{2}. \end{aligned}$$

This time, there is a closed-form solution.

$$UCB_{\Theta_t^{\alpha}}(a) = \phi(a)^{\top} \widehat{\boldsymbol{\theta}}_{\alpha,t} + R_{\text{AMM},t} \| \phi(a) \|_{(\Phi_t^{\top} \Phi_t + \alpha \boldsymbol{I})^{-1}}.$$

Analytic Martingale Mixture UCB

The UCB for our single ellipsoid confidence set is

$$\begin{aligned} \mathrm{UCB}_{\Theta_t^{\alpha}}(a) &= \max_{\boldsymbol{\theta} \in \mathbb{R}^d} \ \phi(a)^{\top} \boldsymbol{\theta} \\ & \text{s.t. } \|\boldsymbol{\theta} - \widehat{\boldsymbol{\theta}}_{\alpha,t}\|_{(\Phi_t^{\top} \Phi_t + \alpha \boldsymbol{I})}^2 \leq R_{\mathrm{AMM},t}^2. \end{aligned}$$

This time, there is a closed-form solution.

$$UCB_{\Theta_t^{\alpha}}(a) = \phi(a)^{\top} \widehat{\boldsymbol{\theta}}_{\alpha,t} + R_{AMM,t} \| \phi(a) \|_{(\Phi_t^{\top} \Phi_t + \alpha \boldsymbol{I})^{-1}}.$$

We call LinUCB with these confidence sets/bounds Analytic Martingale Mixture (AMM-)UCB.

Confidence Bound Maximisation

To run LinUCB with our confidence sets, we need to maximise $UCB_{\Theta_t}(a) = \max_{\theta \in \Theta_t} \{\phi(a)^\top \theta\}$ w.r.t. a

Confidence Bound Maximisation

To run LinUCB with our confidence sets, we need to maximise $UCB_{\Theta_t}(a) = \max_{\theta \in \Theta_t} \{\phi(a)^\top \theta\}$ w.r.t. a

For continuous action sets, we approximately maximise $UCB_{\Theta_t}(a)$ w.r.t a using gradient-based methods.

Confidence Bound Maximisation

To run LinUCB with our confidence sets, we need to maximise $UCB_{\Theta_t}(a) = \max_{\theta \in \Theta_t} \{\phi(a)^\top \theta\}$ w.r.t. a

For continuous action sets, we approximately maximise $UCB_{\Theta_t}(a)$ w.r.t a using gradient-based methods.

For CMM-UCB, $UCB_{\Theta_t}(a)$ and $\nabla_a UCB_{\Theta_t}(a)$ can be computed numerically using differentiable convex optimisation (surprisingly easy with cvxpylayers²).

²A. Agrawal et al. (2019) Differentiable convex optimization layers. NeurIPS

Bounding the Radius

The full expression for the (squared) AMM radius is

$$R_{\text{AMM,t}}^{2} = \boldsymbol{r}_{t} \left(\boldsymbol{I} + \frac{c\Phi_{t}\Phi_{t}^{\top}}{\sigma^{2}} \right)^{-1} \boldsymbol{r}_{t} + \sigma^{2} \ln \left(\det \left(\boldsymbol{I} + \frac{c\Phi_{t}\Phi_{t}^{\top}}{\sigma^{2}} \right) \right) + 2\sigma^{2} \ln(1/\delta)$$
$$+ \alpha B^{2} - \boldsymbol{r}_{t}^{\top} \boldsymbol{r}_{t} + \boldsymbol{r}_{t}^{\top} \Phi_{t} \left(\Phi_{t}^{\top} \Phi_{t} + \alpha \boldsymbol{I} \right)^{-1} \Phi_{t}^{\top} \boldsymbol{r}_{t}.$$

Bounding the Radius

The full expression for the (squared) AMM radius is

$$R_{\text{AMM,t}}^{2} = \boldsymbol{r}_{t} \left(\boldsymbol{I} + \frac{c\Phi_{t}\Phi_{t}^{\top}}{\sigma^{2}} \right)^{-1} \boldsymbol{r}_{t} + \sigma^{2} \ln \left(\det \left(\boldsymbol{I} + \frac{c\Phi_{t}\Phi_{t}^{\top}}{\sigma^{2}} \right) \right) + 2\sigma^{2} \ln(1/\delta)$$
$$+ \alpha B^{2} - \boldsymbol{r}_{t}^{\top} \boldsymbol{r}_{t} + \boldsymbol{r}_{t}^{\top} \Phi_{t} \left(\Phi_{t}^{\top} \Phi_{t} + \alpha \boldsymbol{I} \right)^{-1} \Phi_{t}^{\top} \boldsymbol{r}_{t}.$$

Using the Matrix Inversion Lemma, we have

$$m{r}_t \left(m{I} + rac{c\Phi_t \Phi_t^ op}{\sigma^2}
ight)^{-1} m{r}_t = m{r}_t^ op m{r}_t - m{r}_t^ op \Phi_t \left(\Phi_t^ op \Phi_t + rac{\sigma^2}{c} m{I}
ight)^{-1} \Phi_t^ op m{r}_t.$$

Bounding the Radius

The full expression for the (squared) AMM radius is

$$R_{\text{AMM,t}}^{2} = \boldsymbol{r}_{t} \left(\boldsymbol{I} + \frac{c \Phi_{t} \Phi_{t}^{\top}}{\sigma^{2}} \right)^{-1} \boldsymbol{r}_{t} + \sigma^{2} \ln \left(\det \left(\boldsymbol{I} + \frac{c \Phi_{t} \Phi_{t}^{\top}}{\sigma^{2}} \right) \right) + 2\sigma^{2} \ln(1/\delta)$$
$$+ \alpha B^{2} - \boldsymbol{r}_{t}^{\top} \boldsymbol{r}_{t} + \boldsymbol{r}_{t}^{\top} \Phi_{t} \left(\Phi_{t}^{\top} \Phi_{t} + \alpha \boldsymbol{I} \right)^{-1} \Phi_{t}^{\top} \boldsymbol{r}_{t}.$$

Using the Matrix Inversion Lemma, we have

$$oldsymbol{r}_t \left(oldsymbol{I} + rac{c\Phi_t\Phi_t^ op}{\sigma^2}
ight)^{-1} oldsymbol{r}_t = oldsymbol{r}_t^ op oldsymbol{r}_t - oldsymbol{r}_t^ op \Phi_t \left(\Phi_t^ op \Phi_t + rac{\sigma^2}{c} oldsymbol{I}
ight)^{-1} \Phi_t^ op oldsymbol{r}_t.$$

If we set $\alpha = \sigma^2/c$, the quadratic terms cancel, and we can use the determinant-trace inequality

$$R_{\mathrm{AMM,t}}^2 = \sigma^2 \left(\ln \left(\det \left(\boldsymbol{I} + \frac{c \Phi_t \Phi_t^\top}{\sigma^2} \right) \right) + \frac{B^2}{c} + 2 \ln(1/\delta) \right) \leq \sigma^2 \left(d \ln \left(1 + \frac{ct L^2}{\sigma^2 d} \right) + \frac{B^2}{c} + 2 \ln(1/\delta) \right)$$

^{*} Assuming $\|\phi(a)\|_2 \leq L$.

OFUL Analysis

Step 1. Use optimism to bound the cumulative regret by the confidence bound widths.

$$\sum_{t=1}^{T} \phi(a^*)^{\top} \boldsymbol{\theta}^* - \phi(a_t)^{\top} \boldsymbol{\theta}^* \leq \sum_{t=1}^{T} \text{UCB}_{\Theta_{t-1}}(a^*) - \text{LCB}_{\Theta_{t-1}}(a_t) \leq \sum_{t=1}^{T} \text{UCB}_{\Theta_{t-1}}(a_t) - \text{LCB}_{\Theta_{t-1}}(a_t).$$

OFUL Analysis

Step 1. Use optimism to bound the cumulative regret by the confidence bound widths.

$$\sum_{t=1}^{T} \phi(a^*)^{\top} \boldsymbol{\theta}^* - \phi(a_t)^{\top} \boldsymbol{\theta}^* \leq \sum_{t=1}^{T} \text{UCB}_{\Theta_{t-1}}(a^*) - \text{LCB}_{\Theta_{t-1}}(a_t) \leq \sum_{t=1}^{T} \text{UCB}_{\Theta_{t-1}}(a_t) - \text{LCB}_{\Theta_{t-1}}(a_t).$$

Step 2. For both CMM-UCB and AMM-UCB, we have

$$\sum_{t=1}^{T} UCB_{\Theta_{t-1}}(a_t) - LCB_{\Theta_{t-1}}(a_t) \le \sum_{t=1}^{T} 2R_{AMM,t-1} \|\phi(a_t)\|_{(\Phi_{t-1}^{\top} \Phi_{t-1} + \alpha I)^{-1}}.$$

OFUL Analysis

Step 1. Use optimism to bound the cumulative regret by the confidence bound widths.

$$\sum_{t=1}^{T} \phi(a^*)^{\top} \boldsymbol{\theta}^* - \phi(a_t)^{\top} \boldsymbol{\theta}^* \leq \sum_{t=1}^{T} \text{UCB}_{\Theta_{t-1}}(a^*) - \text{LCB}_{\Theta_{t-1}}(a_t) \leq \sum_{t=1}^{T} \text{UCB}_{\Theta_{t-1}}(a_t) - \text{LCB}_{\Theta_{t-1}}(a_t).$$

Step 2. For both CMM-UCB and AMM-UCB, we have

$$\sum_{t=1}^{T} \text{UCB}_{\Theta_{t-1}}(a_t) - \text{LCB}_{\Theta_{t-1}}(a_t) \le \sum_{t=1}^{T} 2R_{\text{AMM},t-1} \|\phi(a_t)\|_{(\Phi_{t-1}^{\top} \Phi_{t-1} + \alpha \mathbf{I})^{-1}}.$$

Step 3. Separately upper bound $R_{\text{AMM},T-1}$ and $\sum_{t=1}^{T} \|\phi(a_t)\|_{(\Phi_{t-1}^\top \Phi_{t-1} + \alpha I)^{-1}}$, to obtain

$$\sum_{t=1}^{T} \phi(a^*)^{\top} \boldsymbol{\theta}^* - \phi(a_t)^{\top} \boldsymbol{\theta}^* \leq \mathcal{O}(d\sqrt{T} \ln(T)).$$

Comparison With OFUL

We derive and use a bound on the norm of the noise vector

$$\|\boldsymbol{\epsilon}_t\|_2 = \|\Phi_t \boldsymbol{\theta}^* - \boldsymbol{r}_t\|_2 \le R_{\mathrm{MM},t}.$$

We derive and use a bound on the norm of the noise vector

$$\|\boldsymbol{\epsilon}_t\|_2 = \|\Phi_t \boldsymbol{\theta}^* - \boldsymbol{r}_t\|_2 \le R_{\mathrm{MM},t}.$$

For $c = \sigma^2/\alpha$ and any $\alpha > 0$, this leads to the inequality

$$\|\boldsymbol{\theta}^* - \widehat{\boldsymbol{\theta}}_{\alpha,t}\|_{(\Phi_t^\top \Phi_t + \alpha \boldsymbol{I})} \le R_{\text{AMM},t} = \sqrt{\sigma^2 \ln \left(\det \left(\frac{1}{\alpha} \Phi_t^\top \Phi_t + \boldsymbol{I} \right) \right) + \alpha B^2 + 2\sigma^2 \ln(1/\delta)}.$$

We derive and use a bound on the norm of the noise vector

$$\|\boldsymbol{\epsilon}_t\|_2 = \|\Phi_t \boldsymbol{\theta}^* - \boldsymbol{r}_t\|_2 \le R_{\mathrm{MM},t}.$$

For $c = \sigma^2/\alpha$ and any $\alpha > 0$, this leads to the inequality

$$\|\boldsymbol{\theta}^* - \widehat{\boldsymbol{\theta}}_{\alpha,t}\|_{(\boldsymbol{\Phi}_t^\top \boldsymbol{\Phi}_t + \alpha \boldsymbol{I})} \le R_{\mathrm{AMM},t} = \sqrt{\sigma^2 \ln \left(\det \left(\frac{1}{\alpha} \boldsymbol{\Phi}_t^\top \boldsymbol{\Phi}_t + \boldsymbol{I} \right) \right) + \alpha B^2 + 2\sigma^2 \ln(1/\delta)}.$$

OFUL uses a bound on the (weighted) norm of the projection of the noise vector

$$\|\Phi_t^{\top} \boldsymbol{\epsilon}_t\|_{(\Phi_t^{\top} \Phi_t + \alpha \boldsymbol{I})^{-1}} \le \sigma \sqrt{\ln \left(\det \left(\frac{1}{\alpha} \Phi_t^{\top} \Phi_t + \boldsymbol{I} \right) \right)} + 2\ln(1/\delta).$$

We derive and use a bound on the norm of the noise vector

$$\|\boldsymbol{\epsilon}_t\|_2 = \|\Phi_t \boldsymbol{\theta}^* - \boldsymbol{r}_t\|_2 \le R_{\mathrm{MM},t}.$$

For $c = \sigma^2/\alpha$ and any $\alpha > 0$, this leads to the inequality

$$\|\boldsymbol{\theta}^* - \widehat{\boldsymbol{\theta}}_{\alpha,t}\|_{(\Phi_t^\top \Phi_t + \alpha \boldsymbol{I})} \le R_{\text{AMM},t} = \sqrt{\sigma^2 \ln \left(\det \left(\frac{1}{\alpha} \Phi_t^\top \Phi_t + \boldsymbol{I} \right) \right) + \alpha B^2 + 2\sigma^2 \ln(1/\delta)}.$$

OFUL uses a bound on the (weighted) norm of the projection of the noise vector

$$\|\Phi_t^{\top} \boldsymbol{\epsilon}_t\|_{(\Phi_t^{\top} \Phi_t + \alpha \boldsymbol{I})^{-1}} \le \sigma \sqrt{\ln \left(\det \left(\frac{1}{\alpha} \Phi_t^{\top} \Phi_t + \boldsymbol{I} \right) \right)} + 2\ln(1/\delta).$$

This leads to a similar, but looser (due to $\sqrt{a+b} \le \sqrt{a} + \sqrt{b}$) inequality

$$\|\boldsymbol{\theta}^* - \widehat{\boldsymbol{\theta}}_{\alpha,t}\|_{(\Phi_t^\top \Phi_t + \alpha \boldsymbol{I})} \le \sigma \sqrt{\ln\left(\det\left(\frac{1}{\alpha}\Phi_t^\top \Phi_t + \boldsymbol{I}\right)\right)} + 2\ln(1/\delta) + \sqrt{\alpha}B.$$

Bounds on $\|\Phi_t \boldsymbol{\theta}^* - \boldsymbol{r}_t\|_2$ and $\|\boldsymbol{\theta}^*\|_2$ fit together better than bounds on $\|\Phi_t^{\top} \boldsymbol{\epsilon}_t\|_{(\Phi_t^{\top} \Phi_t + \alpha \boldsymbol{I})^{-1}}$ and $\|\boldsymbol{\theta}^*\|_2$.

Bounds on $\|\Phi_t \theta^* - r_t\|_2$ and $\|\theta^*\|_2$ fit together better than bounds on $\|\Phi_t^\top \epsilon_t\|_{(\Phi_t^\top \Phi_t + \alpha I)^{-1}}$ and $\|\theta^*\|_2$.

OFUL: Using the definition of $\widehat{\theta}_{\alpha,t}$, and then the triangle inequality,

$$\begin{split} \|\boldsymbol{\theta}^* - \widehat{\boldsymbol{\theta}}_{\alpha,t}\|_{(\boldsymbol{\Phi}_t^{\top} \boldsymbol{\Phi}_t + \alpha \boldsymbol{I})} &= \|\boldsymbol{\Phi}_t^{\top} \boldsymbol{\epsilon}_t + \alpha \boldsymbol{\theta}^*\|_{(\boldsymbol{\Phi}_t^{\top} \boldsymbol{\Phi}_t + \alpha \boldsymbol{I})^{-1}} \\ &\leq \|\boldsymbol{\Phi}_t^{\top} \boldsymbol{\epsilon}_t\|_{(\boldsymbol{\Phi}_t^{\top} \boldsymbol{\Phi}_t + \alpha \boldsymbol{I})^{-1}} + \alpha \|\boldsymbol{\theta}^*\|_{(\boldsymbol{\Phi}_t^{\top} \boldsymbol{\Phi}_t + \alpha \boldsymbol{I})^{-1}} \\ &\leq \sigma \sqrt{\ln\left(\det\left(\frac{1}{\alpha} \boldsymbol{\Phi}_t^{\top} \boldsymbol{\Phi}_t + \boldsymbol{I}\right)\right) + 2\ln(1/\delta)} + \sqrt{\alpha}B \end{split}$$

Bounds on $\|\Phi_t \boldsymbol{\theta}^* - \boldsymbol{r}_t\|_2$ and $\|\boldsymbol{\theta}^*\|_2$ fit together better than bounds on $\|\Phi_t^\top \boldsymbol{\epsilon}_t\|_{(\Phi_t^\top \Phi_t + \alpha \boldsymbol{I})^{-1}}$ and $\|\boldsymbol{\theta}^*\|_2$.

OFUL: Using the definition of $\widehat{\boldsymbol{\theta}}_{\alpha,t}$, and then the triangle inequality,

$$\begin{split} \|\boldsymbol{\theta}^* - \widehat{\boldsymbol{\theta}}_{\alpha,t}\|_{(\boldsymbol{\Phi}_t^{\top} \boldsymbol{\Phi}_t + \alpha \boldsymbol{I})} &= \|\boldsymbol{\Phi}_t^{\top} \boldsymbol{\epsilon}_t + \alpha \boldsymbol{\theta}^*\|_{(\boldsymbol{\Phi}_t^{\top} \boldsymbol{\Phi}_t + \alpha \boldsymbol{I})^{-1}} \\ &\leq \|\boldsymbol{\Phi}_t^{\top} \boldsymbol{\epsilon}_t\|_{(\boldsymbol{\Phi}_t^{\top} \boldsymbol{\Phi}_t + \alpha \boldsymbol{I})^{-1}} + \alpha \|\boldsymbol{\theta}^*\|_{(\boldsymbol{\Phi}_t^{\top} \boldsymbol{\Phi}_t + \alpha \boldsymbol{I})^{-1}} \\ &\leq \sigma \sqrt{\ln \left(\det \left(\frac{1}{\alpha} \boldsymbol{\Phi}_t^{\top} \boldsymbol{\Phi}_t + \boldsymbol{I}\right)\right) + 2\ln(1/\delta)} + \sqrt{\alpha}B \end{split}$$

The triangle inquality step causes the $\ln \det$ and αB^2 terms to appear under separate square roots.

Bounds on $\|\Phi_t \theta^* - r_t\|_2$ and $\|\theta^*\|_2$ fit together better than bounds on $\|\Phi_t^\top \epsilon_t\|_{(\Phi_t^\top \Phi_t + \alpha I)^{-1}}$ and $\|\theta^*\|_2$.

OFUL: Using the definition of $\widehat{\boldsymbol{\theta}}_{\alpha,t}$, and then the triangle inequality,

$$\begin{split} \|\boldsymbol{\theta}^* - \widehat{\boldsymbol{\theta}}_{\alpha,t}\|_{(\boldsymbol{\Phi}_t^\top \boldsymbol{\Phi}_t + \alpha \boldsymbol{I})} &= \|\boldsymbol{\Phi}_t^\top \boldsymbol{\epsilon}_t + \alpha \boldsymbol{\theta}^*\|_{(\boldsymbol{\Phi}_t^\top \boldsymbol{\Phi}_t + \alpha \boldsymbol{I})^{-1}} \\ &\leq \|\boldsymbol{\Phi}_t^\top \boldsymbol{\epsilon}_t\|_{(\boldsymbol{\Phi}_t^\top \boldsymbol{\Phi}_t + \alpha \boldsymbol{I})^{-1}} + \alpha \|\boldsymbol{\theta}^*\|_{(\boldsymbol{\Phi}_t^\top \boldsymbol{\Phi}_t + \alpha \boldsymbol{I})^{-1}} \\ &\leq \sigma \sqrt{\ln\left(\det\left(\frac{1}{\alpha}\boldsymbol{\Phi}_t^\top \boldsymbol{\Phi}_t + \boldsymbol{I}\right)\right) + 2\ln(1/\delta)} + \sqrt{\alpha}B \end{split}$$

The triangle inequality step causes the $\ln \det$ and αB^2 terms to appear under separate square roots.

Ours: We combine our constraints by completing the square on the LHS of

$$\|\Phi_t \boldsymbol{\theta}^* - \boldsymbol{r}_t\|_2^2 + \alpha \|\boldsymbol{\theta}^*\|_2^2 \le R_{\text{MM},t}^2 + \alpha B^2$$

Some Experimental Results

Confidence Bound Comparison

Confidence Bound Comparison

Hyperparameter Tuning

	Raisin		Maternal		Banknotes	
	Mean Acc	Мах Асс	Mean Acc	Мах Асс	Mean Acc	Max Acc
CMM-UCB (Ours)	0.818 ± 0.018	0.893 ± 0.019	0.744 ± 0.020	0.829 ± 0.023	0.954 ± 0.005	1.000 ± 0.000
AMM-UCB (Ours)	0.800 ± 0.017	0.892 ± 0.020	0.736 ± 0.020	0.829 ± 0.023	0.948 ± 0.005	1.000 ± 0.000
OFUL	0.764 ± 0.019	0.891 ± 0.019	0.722 ± 0.019	0.827 ± 0.022	0.929 ± 0.006	1.000 ± 0.000
IDS ³	0.706 ± 0.048	0.891 ± 0.020	0.714 ± 0.019	0.827 ± 0.024	0.926 ± 0.007	1.000 ± 0.000
Freq-TS ⁴	0.527 ± 0.022	0.884 ± 0.019	0.616 ± 0.018	0.823 ± 0.022	0.808 ± 0.012	1.000 ± 0.000

 $^{^3}$ J. Kirschner and A. Krause. (2018) Information directed sampling and bandits with heteroscedastic noise, COLT

 $^{^4}$ S. Agrawal and N. Goyal. (2013) Thompson sampling for contextual bandits with linear payoffs, ICML

The means μ_t and covariances T_t of the standard mixture distributions can be written in the form

$$m{\mu}_t = egin{bmatrix} m(a_1) \ m(a_2) \ dots \ m(a_t) \end{bmatrix}, \qquad m{T}_t = egin{bmatrix} k(a_1, a_1) & k(a_1, a_2) & \cdots & k(a_1, a_t) \ k(a_2, a_1) & k(a_2, a_2) & \cdots & k(a_2, a_t) \ dots & dots & dots & dots \ k(a_t, a_1) & k(a_t, a_2) & \cdots & k(a_t, a_t) \end{bmatrix},$$

where m(a) = 0 and $k(a, a') = \phi(a)^{\top} \phi(a')$.

The means μ_t and covariances T_t of the standard mixture distributions can be written in the form

$$m{\mu}_t = egin{bmatrix} m(a_1) \\ m(a_2) \\ \vdots \\ m(a_t) \end{bmatrix}, \qquad m{T}_t = egin{bmatrix} k(a_1, a_1) & k(a_1, a_2) & \cdots & k(a_1, a_t) \\ k(a_2, a_1) & k(a_2, a_2) & \cdots & k(a_2, a_t) \\ \vdots & \vdots & \ddots & \vdots \\ k(a_t, a_1) & k(a_t, a_2) & \cdots & k(a_t, a_t) \end{bmatrix},$$

where m(a) = 0 and $k(a, a') = \phi(a)^{\top} \phi(a')$.

We also tried out

$$\boldsymbol{\mu}_t = \begin{bmatrix} m_0(a_1) \\ m_1(a_2) \\ \vdots \\ m_{t-1}(a_t) \end{bmatrix}, \qquad \boldsymbol{T}_t = \begin{bmatrix} k_0(a_1, a_1) & k_1(a_1, a_2) & \cdots & k_{t-1}(a_1, a_t) \\ k_1(a_2, a_1) & k_1(a_2, a_2) & \cdots & k_{t-1}(a_2, a_t) \\ \vdots & \vdots & \ddots & \vdots \\ k_{t-1}(a_t, a_1) & k_{t-1}(a_t, a_2) & \cdots & k_{t-1}(a_t, a_t) \end{bmatrix},$$

where $m_t(a) = k_t(a)^{\top} (K_t + \beta I)^{-1} r_t$ and $k_t(a, a') = k(a, a') - k_t(a)^{\top} (K_t + \beta I)^{-1} k_t(a')$.

Adaptive mixture distributions don't always help this much though.

Thank you for listening!