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The question

Algorithm Regret type Rate
GP-UCB worst-case γT

√
T

GP-UCB Bayesian
√
γTT

GP-TS worst-case γT
√
T

GP-TS Bayesian
√
γTT

GP-UCRL worst-case γT
√
T

GP-UCRL Bayesian ???
GP-PSRL worst-case ???
GP-PSRL Bayesian γT

√
T

Is a Bayesian regret bound of the order
√
γTT possible for GP-PSRL?
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The setting



The model

Finite horizon MDPM = (S,A, P, r, µ,H).

• S ⊆ Rds is a set of states
• A ⊆ Rda is a set of actions
• P : S ×A → ∆(S) is the (unknown) transition kernel
• r : S ×A → R is the (known) reward function
• µ is the initial state distribution
• H is the horizon

Finite horizon MDPM = (S,A, f , r, µ,H).

• S = Rds is a set of states
• A ⊆ Bda(Ra) is a set of actions
• P (s,a) = N (f(s,a), σ2I) (f is unknown, σ is known)
• r : S ×A → [−Rmax, Rmax] is the (known) reward function
• µ = N (0, σ2I) is the initial state distribution
• H is the horizon

Write X = S ×A and x = (s,a) ∈ S ×A.
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Interaction protocol

The true MDP isM? = (S,A, f?, r, µ,H). Write f? = (f?1 , . . . , f
?
ds

).
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Interaction protocol

The true MDP isM? = (S,A, f?, r, µ,H). Write f? = (f?1 , . . . , f
?
ds

).

At the start of the interaction, f?i ∼ GP(0, k(x,x′)).

For a sequence of episodes n = 1, . . . , N , the following steps are repeated:

1. An initial state sn,1 is drawn from the initial state distribution µ

2. For steps h = 1, . . . , H:

• The learner selects the action an,h
• The learner observes the reward rn,h = r(sn,h,an,h)

• The learner observes the next state sn,h+1 ∼ N (f?(sn,h,an,h), σ2I)

(unless h = H)
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Regret

For any MDPM = (S,A, f, r, µ,H), policy π and time step h, we define the value function VMπ,h : S → R as

VMπ,h(s) := EM,π

 H∑
j=h

r(sj ,aj)

∣∣∣∣sh = s

 .

The Bayesian regret after T = NH total steps, or N episodes, is

BayesRegretT = E
[ N∑
n=1

VM
?

π?,1(sn,1)− V
M?

πn,1
(sn,1)

]
.

Maximum information gain: For a covariance kernel k : X × X → R and any radius R > 0,

γT (σ
2, R) := sup

x1,...,xT :‖xi‖2≤R

1

2
log det

(
1

σ2
KT + I

)
.
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Posterior sampling reinforcement learning

In each episode, draw a random MDP from the posterior and follow the optimal policy for the sampled MDP.

After episode n− 1, the posterior Qn(fi|Hn−1) is the Gaussian princess with (predictive) mean and variance

µn−1,i(x) = kn−1(x)
>(Kn−1 + σ2I)−1sn−1,i

σ2
n−1(x) = k(x,x)− kn−1(x)

>(Kn−1 + σ2I)−1kn−1(x) .

GP-PSRL: Initialise history H0 = ∅. For episode n = 1, . . . , N :

1. Draw a random f (n) from the posterior Qn

2. Find the optimal policy πn for the MDPMn = (S,A, f (n), r, µ,H)

3. Observe sn,1 ∼ µ, and for h = 1, . . . , H:

4. Update the history Hn = Hn−1 ∪ {sn,1,an,1, . . . , sn,H ,an,H} and update the posterior
Qn+1(f) ∝ p(Hn|f)Q1(f)
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Regret bounds for PSRL



General recipe for PSRL regret analysis

Stochastic optimism. Since f? and f (n) have the same conditional distribution,

BayesRegret(T ) = E
[ N∑
n=1

VM
?

π?,1(sn,1)− V
Mn
πn,1

(sn,1)

]
+ E

[ N∑
n=1

VMn
πn,1

(sn,1)− VM
?

πn,1
(sn,1)

]

Stochastic optimism. Since f? and f (n) have the same conditional distribution,

BayesRegret(T ) =

�������������

E
[ N∑
n=1

VM
?

π?,1(sn,1)− V
Mn
πn,1

(sn,1)

]
+ E

[ N∑
n=1

VMn
πn,1

(sn,1)− VM
?

πn,1
(sn,1)

]

Simulation lemma. The value estimation error is controlled by the difference between f (n) and f?.

E
[ N∑
n=1

VMn
πn,1

(sn,1)− VM
?

πn,1
(sn,1)

]
≤
HRmax

σ
E
[ N∑
n=1

H−1∑
h=1

‖f (n)(xn,h)− f?(xn,h)‖2
]
.

GP concentration. Bound the differences between f (n) and f? at (xn,h)n,h.

HRmax

σ
E
[ N∑
n=1

H−1∑
h=1

‖f (n)(xn,h)− f?(xn,h)‖2
]
≈ O

(
H(ds + da)

√
TγT

)
.

Problem: With positive probability, the states sn,h+1 = f?(sn,h) + εn,h+1 exceed any finite bound.
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Problems with unbounded states

Failure of uniform GP concentration. The supremum of a GP over an unbounded domain blows up.

E
[

sup
x∈Bds+da (R)

∣∣f (n)i (x)− f?i (x)
∣∣] & (ds + da)

√
log(R) .

Linear information gain. Take k to be a Matérn kernel or the Gaussian kernel and consider

γT (σ
2,∞) := sup

x1,...,xT :xi∈Rds+da

1

2
log det

(
1

σ2
KT + I

)
.

We can always choose x1, . . . ,xT to be arbitrarily far apart, which means

γT (σ
2,∞) =

1

2
log det

(
1

σ2
I+ I

)
=
T

2
log

(
1 + σ2

σ2

)
.
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The fix



General idea

8



Tool 1: GP concentration

Let f ∼ GP(0, k(x,x′)) be a random draw from a zero mean Gaussian process with a covariance kernel
k : X × X → R that satisfies C := supx∈X k(x,x) <∞ and

∀x,x′ ∈ Bds+da (R) , |k(x,x)− k(x,x′)| ≤ L‖x− x′‖2 .

Then there exists a universal constant D, such that for all z ≥
√
ds +

√
2ds(ds + da),

P
(

sup
x∈Bds+da (R)

∥∥f?(x)∥∥
2
≥ z
)
≤ 2ds

(
D
√
C2 + 4LR

C
√

2ds(ds + da)
z

)2(ds+da)

exp

(
−

z2

2dsC2

)
.

Importantly, if z ≥ D(ds + da)
√

log(1/δ), then P(supx∈Bds+da (R) ‖f?(x)‖2 ≥ z) ≤ δ.
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Tool 2: indicator trick

For any finite collection of events (Ah)
H
h=1,

I{∪Hh=1A
c
h} =

H∑
h=1

I{Ac
h}I{∩

h−1
j=1Aj} .

Easy proof for H = 2.
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Bounded states

Let An,h := {‖sn,h‖2 ≤ Rh} and define the good event A := ∩Nn=1 ∩Hh=1 An,h.

Using the indicator trick,

P(Ac) = E[I{∪Nn=1 ∪Hh=1 A
c
n,h}] =

N∑
n=1

H∑
h=1

E[I{Ac
n,h}I{(∩

n−1
i=1 ∩

H
j=1 Ai,j) ∩ (∩h−1

j=1An,j)}]

≤
N∑
n=1

H∑
h=1

E[I{‖sn,h‖2 ≥ Rh}I{‖sn,h−1‖2 ≤ Rh−1}] .

If ‖sn,h‖2 ≤ Rh, then ‖xn,h‖2 ≤
√
R2
h +R2

a =: R̃h. Therefore,

E[I{‖sn,h‖2 ≥ Rh}I{‖sn,h−1‖2 ≤ Rh−1}] ≤ P
(
sup

x∈Bds+da (R̃h−1)
‖f?(x)‖2 > Rh/2

)
+ P(‖εn,h‖2 > Rh/2)

≤ 2ds

(
D

√
C2+4LR̃h−1

C
√

2ds(ds+da)
Rh

)2(ds+da)

exp

(
− R2

h
8dsC2

)
+ 2ds/2 exp

(
− R2

h
16σ2

)
.

One can set each Rh such that R̃h ≤ C̃h(ds + da)
√

log(T ),

E[I{‖sn,h‖2 ≥ Rh}I{‖sn,h−1‖2 ≤ Rh−1}] ≤ 1
T2 , and P(Ac) ≤

1

T
.
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C2+4LR̃h−1

C
√

2ds(ds+da)
Rh
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(
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8dsC2

)
+ 2ds/2 exp
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.
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Main result

For a bounded and Lipschitz kernel function k, the Bayesian regret of PSRL (with f?1 , . . . , f
?
ds
∼ GP(0, k(x,x′)))

satisfies

BayesRegretT = O
(
H(ds + da)

√
γT (σ2, (ds + da)

√
log(T ))T log(T )

)
.

“Proof.” Follow the recipe from before, but under the good event A.

If k is the Matérn kernel (with smoothness parameter ν), then

γT (σ
2, (ds + da)

√
log(T )) = O

(
(ds + da)

2νT
ds+da

2ν+ds+da log
max(ν, 2ν

ν+1
)
(T )
)
,

and
BayesRegretT = O

(
H(ds + da)

1+νT
ν+ds+da
2ν+ds+da log

1+max( ν
2
, ν
ν+1

)
(T )
)
.
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Conclusion

In the Bayesian regret bound for GP-PSRL, you can get the information gain
underneath the square root.

What’s left?

• What if the kernel is not uniformly (on S ×A) bounded/Lipschitz? (done)

• What if an approximate posterior is used? (somewhat done)

• What about worst-case regret? (not done)
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The end. Thank you!


