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Is a Bayesian regret bound of the order \/~1T possible for GP-PSRL?
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« S = R% is a set of states

- A C B%(R,) is a set of actions

 P(s,a) = N(f(s,a),cI) (f is unknown, o is known)

* 7 :8 X A — [—Rpax, Rmax) is the (known) reward function
« 1= N(0,0°T) is the initial state distribution

* H is the horizon

Write ¥ =S x Aand x = (s,a) € S x A.
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Interaction protocol

The true MDP is M* = (S, A, f*,r, n, H). Write f* = (f,... ,f;s).
At the start of the interaction, f* ~ GP(0, k(x,x’)).

For a sequence of episodes n =1, ..., N, the following steps are repeated:

1. Aninitial state s,,,1 is drawn from the initial state distribution 1
2. Forstepsh=1,...,H:
* The learner selects the action a,, 5,
* The learner observes the reward r,, j, = (S5, @n.n)
« The learner observes the next state s, n+1 ~ N (f*(sp.h, an.n),o°I)
(unless h = H)
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Regret

For any MDP M = (S, A, f,r, u, H), policy = and time step h, we define the value function VT{"’}L :S—Ras

Sh:S:| .

N
BayesRegret = IE[ Z V,r/\fl*l (sn,1) — V_,{Zl,l(an)} .
n=1

H

V#Y}l(s) =Epnn |:Z r(sj,a;)

j=h

The Bayesian regret after ' = N H total steps, or N episodes, is

Maximum information gain: For a covariance kernel k£ : X x X — R and any radius R > 0,

1 1
’YT(O'Z,R) = sup — log det (—2KT + I) .
x1,enxi %2 <R 2 o
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Posterior sampling reinforcement learning

In each episode, draw a random MDP from the posterior and follow the optimal policy for the sampled MDP.

After episode n — 1, the posterior Q. (f;|Hr—1) is the Gaussian princess with (predictive) mean and variance

fn—1,i(x) = kn_1(x) T (Kn_1 +0°L) " 's,_1
02 _1(x) = k(x,%) —kp—1(x) T (Kpn_1 + 1) " Tky,_1(x).

GP-PSRL: Initialise history Hy = (). For episode n =1,..., N:

1. Draw a random f(™) from the posterior Q,

2. Find the optimal policy 7, for the MDP M., = (S, A, ™) r, u, H)

3. Observes, 1 ~u,andforh=1,..., H:

4. Update the history H,, = H,,—1 U{sn,1,8n,1,...,Sn, i, a,, &} and update the posterior
Qnt1(f) < p(Hn|f)Q1(f)



Regret bounds for PSRL
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General recipe for PSRL regret analysis

Stochastic optimism. Since f* and f(") have the same conditional distribution,

Sn1:|+IE|:ZV [ (sn,1) — Ml(sn,l)]

BayesRegret(T') = E

Simulation lemma. The value estimation error is controlled by the difference between £() and f*.

N H-1

[ZV 1) = Vi (on)] < [ZZW (500) = Gl

GP concentration. Bound the differences between f(") and f* at (X, h)n,h-

N
P [ZZW( 0n) = £* )2 2 O (s + o)/ Tr)

n=1 h=1

Problem: With positive probability, the states s,, ;1 = f*(sn,n) + €n,n+1 €xceed any finite bound.



Problems with unbounded states
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Problems with unbounded states

Failure of uniform GP concentration. The supremum of a GP over an unbounded domain blows up.

E[ s !ff")(X)ffi*(X)}}z(ds+da) Toa(R)
x€EBds+da (R)

Linear information gain. Take & to be a Matérn kernel or the Gaussian kernel and consider

1 1
'yT(UQ, 00) = sup — log det (;KT + I) .

X1, X7 ix; ERds tda

We can always choose x1, ..., x to be arbitrarily far apart, which means

1 1 T 1402
VT(UQ,oo):glogdet(EI—l—I):Elog( g )




The fix



General idea

h_—_| h:g-

“S.\‘.\, = " Eﬁ,l”, " SwZ“é ”'F*(xﬁ")“' \l S“'“”‘&-”‘F‘(’(A.n-l)"
+ V[ &n2l| FlEn,ull
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Tool 1: GP concentration

SHARPER BOUNDS FOR GAUSSIAN AND
EMPIRICAL PROCESSES'

By M. TALAGRAND
Let f ~ GP(0, k(x,x")) be a random draw from a zero mean Gaussian process with a covariance kernel
k: X x X — R that satisfies C' := sup, ¢ y k(x,x) < oo and
vx, x' € BTda(R) | [k(x,x) — k(x,x)| < L|jx — x|
Then there exists a universal constant D, such that for all z > v/ds + \/2ds(ds + da),

DV/C? ¥ 4LR )2<ds+da> ( 22 )
———— exp .

P sup *(x 2z>§2ds( z -
(xeBds+da<R)||f Gl C+/2ds(ds + dg) 2d,C2

Importantly, if 2 > D(ds + da)+/log(1/9), then P(sup, cpas+da (g) 1/ (x)]l2 = 2) < 0.
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Tool 2: indicator trick

For any finite collection of events (A, )|,

H

KURZ AR = D AN 21 A}
h=1

Easy proof for H = 2.

==& )

" UAT Aa NA, AS

10



Bounded states
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Let A, p, == {lIsn,nll2 < Ry} and define the good event A :=nI_, nH_ A, ;.. Using the indicator trick,
N H
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Bounded states

Let A, p, == {lIsn,nll2 < Ry} and define the good event A :=nI_, nH_ A, ;.. Using the indicator trick,

P(AS) = E[{UNZ, URy A5 W3] = D0 D0 EIAS {5 Ly Aiy) 0 (021 An) Y

n,h
N H
<SS E{lIsnnllz > Ra}I{lIsnn-1ll2 < Ru_1}].

It llsn.nll2 < Ry, then |Ixp pll2 < /R + R2 =: Ry,. Therefore,
E{llsn,nllz > Ru}I{lIsnn-1ll2 < Ba-1}] < P(sUPyepa, taa (i, 1/ (llz > Rn/2) + Plllen,nllz > Ra/2)

D\/C244LR,, 2(ds+da) 2
< 2ds (#R;J exp ( Ll )

— h
Cy/2d5(ds+da) 8d,C2

ds/2 _ B
+2 exp( 1652)'
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Bounded states

Let A, p, == {lIsn,nll2 < Ry} and define the good event A :=nI_, nH_ A, ;.. Using the indicator trick,

P(A%) = E[I{un_; UFLy A5 3 = D D> EI{AS, , M{(NPS Ny Aig) (N2 An i)Y
n=1h=1
N H
<Y EM{lIsnnllz > Bad{llsnn-1llz < Ra-1}].
n=1h=1

It llsn.nll2 < Ry, then |Ixp pll2 < /R + R2 =: Ry,. Therefore,
E{llsn,nllz > Ru}I{lIsnn-1ll2 < Ba-1}] < P(sUPyepa, taa (i, 1/ (llz > Rn/2) + Plllen,nllz > Ra/2)

D /02+4L§ -~ 2(ds+da) 2
< 2ds (7“}2;1) exp ( — %)

Cv/2ds(ds+da)
ds /2 _ B
+2 exp ( 1602) .

One can set each Ry, such that Ry, < Cy,(ds + da)+/Tog(T),

E[l{llsn,nll2 > Rp}{lIsn,n-1ll2 < Rn1}] < 7, and
11



For a bounded and Lipschitz kernel function %, the B [ .
satisfies ’ ayesian regret of PSRL (with f7,..., fj ~ GP(0, k(x,x")))
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For a bounded and Lipschitz kernel function %, the Bayesian regret of PSRL (with f{, ..., f;d ~ GP(0,k(x,x")))

satisfies

BayesRegret = O(H(ds + da)\/'yT(OQ, (ds + da)\/log(T))T log(T)) .
“Proof.” Follow the recipe from before, but under the good event A.
If k is the Matérn kernel (with smoothness parameter v), then
2 2 e (oM (v 2E)
vr(0%, (ds + da)y/10g(T)) = O((ds + da)™ T2 +ds+a log AT

and
vtds+dg v v
BayesRegret = O(H(ds + d) 1TV T 2vFds Fda 10g1+max( 27 u+1>(T)) .

12



Conclusion

In the Bayesian regret bound for GP-PSRL, you can get the information gain
underneath the square root.
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Conclusion

In the Bayesian regret bound for GP-PSRL, you can get the information gain
underneath the square root.

What'’s left?

» What if the kernel is not uniformly (on S x A) bounded/Lipschitz? (done)
« What if an approximate posterior is used? (somewhat done)
» What about worst-case regret? (not done)

13



The end. Thank you!



