

Sub-linear regret bounds for posterior sampling reinforcement learning with Gaussian processes

Work in progress: I might be talking moonshine

Joe Watson, Hamish Flynn, Jan Peters

02/12/2025

The question

Algorithm	Regret type	Rate
GP-UCB	worst-case	$\gamma_T \sqrt{T}$
GP-UCB	Bayesian	$\sqrt{\gamma_T T}$
GP-TS	worst-case	$\gamma_T \sqrt{T}$
GP-TS	Bayesian	$\sqrt{\gamma_T T}$

The question

Algorithm	Regret type	Rate
GP-UCB	worst-case	$\gamma_T \sqrt{T}$
GP-UCB	Bayesian	$\sqrt{\gamma_T T}$
GP-TS	worst-case	$\gamma_T \sqrt{T}$
GP-TS	Bayesian	$\sqrt{\gamma_T T}$
GP-UCRL	worst-case	$\gamma_T \sqrt{T}$
GP-UCRL	Bayesian	???
GP-PSRL	worst-case	???
GP-PSRL	Bayesian	$\gamma_T \sqrt{T}$

The question

Algorithm	Regret type	Rate
GP-UCB	worst-case	$\gamma_T \sqrt{T}$
GP-UCB	Bayesian	$\sqrt{\gamma_T T}$
GP-TS	worst-case	$\gamma_T \sqrt{T}$
GP-TS	Bayesian	$\sqrt{\gamma_T T}$
GP-UCRL	worst-case	$\gamma_T \sqrt{T}$
GP-UCRL	Bayesian	???
GP-PSRL	worst-case	???
GP-PSRL	Bayesian	$\gamma_T \sqrt{T}$

Is a Bayesian regret bound of the order $\sqrt{\gamma_T T}$ possible for GP-PSRL?

The setting

The model

Finite horizon MDP $\mathcal{M} = (\mathcal{S}, \mathcal{A}, P, r, \mu, H)$.

- $\mathcal{S} \subseteq \mathbb{R}^{d_s}$ is a set of states
- $\mathcal{A} \subseteq \mathbb{R}^{d_a}$ is a set of actions
- $P : \mathcal{S} \times \mathcal{A} \rightarrow \Delta(\mathcal{S})$ is the (unknown) transition kernel
- $r : \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$ is the (known) reward function
- μ is the initial state distribution
- H is the horizon

The model

Finite horizon MDP $\mathcal{M} = (\mathcal{S}, \mathcal{A}, \mathbf{f}, r, \mu, H)$.

- $\mathcal{S} = \mathbb{R}^{d_s}$ is a set of states
- $\mathcal{A} \subseteq \mathbb{B}^{d_a}(R_a)$ is a set of actions
- $P(\mathbf{s}, \mathbf{a}) = \mathcal{N}(f(\mathbf{s}, \mathbf{a}), \sigma^2 \mathbf{I})$ (f is unknown, σ is known)
- $r : \mathcal{S} \times \mathcal{A} \rightarrow [-R_{\max}, R_{\max}]$ is the (known) reward function
- $\mu = \mathcal{N}(0, \sigma^2 \mathbf{I})$ is the initial state distribution
- H is the horizon

The model

Finite horizon MDP $\mathcal{M} = (\mathcal{S}, \mathcal{A}, \mathbf{f}, r, \mu, H)$.

- $\mathcal{S} = \mathbb{R}^{d_s}$ is a set of states
- $\mathcal{A} \subseteq \mathbb{B}^{d_a}(R_a)$ is a set of actions
- $P(\mathbf{s}, \mathbf{a}) = \mathcal{N}(f(\mathbf{s}, \mathbf{a}), \sigma^2 \mathbf{I})$ (f is unknown, σ is known)
- $r : \mathcal{S} \times \mathcal{A} \rightarrow [-R_{\max}, R_{\max}]$ is the (known) reward function
- $\mu = \mathcal{N}(0, \sigma^2 \mathbf{I})$ is the initial state distribution
- H is the horizon

Write $\mathcal{X} = \mathcal{S} \times \mathcal{A}$ and $\mathbf{x} = (\mathbf{s}, \mathbf{a}) \in \mathcal{S} \times \mathcal{A}$.

Interaction protocol

The true MDP is $\mathcal{M}^* = (\mathcal{S}, \mathcal{A}, f^*, r, \mu, H)$. Write $f^* = (f_1^*, \dots, f_{d_s}^*)$.

Interaction protocol

The true MDP is $\mathcal{M}^* = (\mathcal{S}, \mathcal{A}, f^*, r, \mu, H)$. Write $f^* = (f_1^*, \dots, f_{d_s}^*)$.

At the start of the interaction, $f_i^* \sim \mathcal{GP}(0, k(\mathbf{x}, \mathbf{x}'))$.

Interaction protocol

The true MDP is $\mathcal{M}^* = (\mathcal{S}, \mathcal{A}, f^*, r, \mu, H)$. Write $f^* = (f_1^*, \dots, f_{d_s}^*)$.

At the start of the interaction, $f_i^* \sim \mathcal{GP}(0, k(\mathbf{x}, \mathbf{x}'))$.

For a sequence of episodes $n = 1, \dots, N$, the following steps are repeated:

1. An initial state $\mathbf{s}_{n,1}$ is drawn from the initial state distribution μ
2. For steps $h = 1, \dots, H$:
 - The learner selects the action $\mathbf{a}_{n,h}$
 - The learner observes the reward $r_{n,h} = r(\mathbf{s}_{n,h}, \mathbf{a}_{n,h})$
 - The learner observes the next state $\mathbf{s}_{n,h+1} \sim \mathcal{N}(f^*(\mathbf{s}_{n,h}, \mathbf{a}_{n,h}), \sigma^2 \mathbf{I})$ (unless $h = H$)

Regret

For any MDP $\mathcal{M} = (\mathcal{S}, \mathcal{A}, f, r, \mu, H)$, policy π and time step h , we define the value function $V_{\pi, h}^{\mathcal{M}} : \mathcal{S} \rightarrow \mathbb{R}$ as

$$V_{\pi, h}^{\mathcal{M}}(\mathbf{s}) := \mathbb{E}_{\mathcal{M}, \pi} \left[\sum_{j=h}^H r(\mathbf{s}_j, \mathbf{a}_j) \middle| \mathbf{s}_h = \mathbf{s} \right].$$

Regret

For any MDP $\mathcal{M} = (\mathcal{S}, \mathcal{A}, f, r, \mu, H)$, policy π and time step h , we define the value function $V_{\pi, h}^{\mathcal{M}} : \mathcal{S} \rightarrow \mathbb{R}$ as

$$V_{\pi, h}^{\mathcal{M}}(\mathbf{s}) := \mathbb{E}_{\mathcal{M}, \pi} \left[\sum_{j=h}^H r(\mathbf{s}_j, \mathbf{a}_j) \middle| \mathbf{s}_h = \mathbf{s} \right].$$

The Bayesian regret after $T = NH$ total steps, or N episodes, is

$$\text{BayesRegret}_T = \mathbb{E} \left[\sum_{n=1}^N V_{\pi^*, 1}^{\mathcal{M}^*}(\mathbf{s}_{n,1}) - V_{\pi_n, 1}^{\mathcal{M}^*}(\mathbf{s}_{n,1}) \right].$$

Regret

For any MDP $\mathcal{M} = (\mathcal{S}, \mathcal{A}, f, r, \mu, H)$, policy π and time step h , we define the value function $V_{\pi, h}^{\mathcal{M}} : \mathcal{S} \rightarrow \mathbb{R}$ as

$$V_{\pi, h}^{\mathcal{M}}(\mathbf{s}) := \mathbb{E}_{\mathcal{M}, \pi} \left[\sum_{j=h}^H r(\mathbf{s}_j, \mathbf{a}_j) \middle| \mathbf{s}_h = \mathbf{s} \right].$$

The Bayesian regret after $T = NH$ total steps, or N episodes, is

$$\text{BayesRegret}_T = \mathbb{E} \left[\sum_{n=1}^N V_{\pi^*, 1}^{\mathcal{M}^*}(\mathbf{s}_{n,1}) - V_{\pi_n, 1}^{\mathcal{M}^*}(\mathbf{s}_{n,1}) \right].$$

Maximum information gain: For a covariance kernel $k : \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ and any radius $R > 0$,

$$\gamma_T(\sigma^2, R) := \sup_{\mathbf{x}_1, \dots, \mathbf{x}_T: \|\mathbf{x}_i\|_2 \leq R} \frac{1}{2} \log \det \left(\frac{1}{\sigma^2} \mathbf{K}_T + \mathbf{I} \right).$$

Posterior sampling reinforcement learning

In each episode, draw a random MDP from the posterior and follow the optimal policy for the sampled MDP.

Posterior sampling reinforcement learning

In each episode, draw a random MDP from the posterior and follow the optimal policy for the sampled MDP.

After episode $n - 1$, the posterior $Q_n(f_i|H_{n-1})$ is the Gaussian process with (predictive) mean and variance

$$\begin{aligned}\mu_{n-1,i}(\mathbf{x}) &= \mathbf{k}_{n-1}(\mathbf{x})^\top (\mathbf{K}_{n-1} + \sigma^2 \mathbf{I})^{-1} \mathbf{s}_{n-1,i} \\ \sigma_{n-1}^2(\mathbf{x}) &= k(\mathbf{x}, \mathbf{x}) - \mathbf{k}_{n-1}(\mathbf{x})^\top (\mathbf{K}_{n-1} + \sigma^2 \mathbf{I})^{-1} \mathbf{k}_{n-1}(\mathbf{x}) .\end{aligned}$$

Posterior sampling reinforcement learning

In each episode, draw a random MDP from the posterior and follow the optimal policy for the sampled MDP.

After episode $n - 1$, the posterior $Q_n(f_i|H_{n-1})$ is the Gaussian process with (predictive) mean and variance

$$\begin{aligned}\mu_{n-1,i}(\mathbf{x}) &= \mathbf{k}_{n-1}(\mathbf{x})^\top (\mathbf{K}_{n-1} + \sigma^2 \mathbf{I})^{-1} \mathbf{s}_{n-1,i} \\ \sigma_{n-1}^2(\mathbf{x}) &= k(\mathbf{x}, \mathbf{x}) - \mathbf{k}_{n-1}(\mathbf{x})^\top (\mathbf{K}_{n-1} + \sigma^2 \mathbf{I})^{-1} \mathbf{k}_{n-1}(\mathbf{x}) .\end{aligned}$$

GP-PSRL: Initialise history $H_0 = \emptyset$. For episode $n = 1, \dots, N$:

1. Draw a random $f^{(n)}$ from the posterior Q_n
2. Find the optimal policy π_n for the MDP $\mathcal{M}_n = (\mathcal{S}, \mathcal{A}, f^{(n)}, r, \mu, H)$
3. Observe $\mathbf{s}_{n,1} \sim \mu$, and for $h = 1, \dots, H$:
4. Update the history $H_n = H_{n-1} \cup \{\mathbf{s}_{n,1}, \mathbf{a}_{n,1}, \dots, \mathbf{s}_{n,H}, \mathbf{a}_{n,H}\}$ and update the posterior $Q_{n+1}(f) \propto p(H_n|f)Q_1(f)$

Regret bounds for PSRL

General recipe for PSRL regret analysis

Stochastic optimism. Since f^* and $f^{(n)}$ have the same conditional distribution,

$$\text{BayesRegret}(T) = \mathbb{E} \left[\sum_{n=1}^N V_{\pi^*, 1}^{\mathcal{M}^*}(\mathbf{s}_{n,1}) - V_{\pi_n, 1}^{\mathcal{M}_n}(\mathbf{s}_{n,1}) \right] + \mathbb{E} \left[\sum_{n=1}^N V_{\pi_n, 1}^{\mathcal{M}_n}(\mathbf{s}_{n,1}) - V_{\pi_n, 1}^{\mathcal{M}^*}(\mathbf{s}_{n,1}) \right]$$

General recipe for PSRL regret analysis

Stochastic optimism. Since f^* and $f^{(n)}$ have the same conditional distribution,

$$\text{BayesRegret}(T) = \mathbb{E} \left[\sum_{n=1}^N V_{\pi^*, 1}^{\mathcal{M}^*}(\mathbf{s}_{n,1}) - V_{\pi_n, 1}^{\mathcal{M}_n}(\mathbf{s}_{n,1}) \right] + \mathbb{E} \left[\sum_{n=1}^N V_{\pi_n, 1}^{\mathcal{M}_n}(\mathbf{s}_{n,1}) - V_{\pi_n, 1}^{\mathcal{M}^*}(\mathbf{s}_{n,1}) \right]$$

General recipe for PSRL regret analysis

Stochastic optimism. Since f^* and $f^{(n)}$ have the same conditional distribution,

$$\text{BayesRegret}(T) = \mathbb{E} \left[\sum_{n=1}^N V_{\pi^*, 1}^{\mathcal{M}^*}(\mathbf{s}_{n,1}) - V_{\pi_n, 1}^{\mathcal{M}_n}(\mathbf{s}_{n,1}) \right] + \mathbb{E} \left[\sum_{n=1}^N V_{\pi_n, 1}^{\mathcal{M}_n}(\mathbf{s}_{n,1}) - V_{\pi_n, 1}^{\mathcal{M}^*}(\mathbf{s}_{n,1}) \right]$$

Simulation lemma. The value estimation error is controlled by the difference between $f^{(n)}$ and f^* .

$$\mathbb{E} \left[\sum_{n=1}^N V_{\pi_n, 1}^{\mathcal{M}_n}(\mathbf{s}_{n,1}) - V_{\pi_n, 1}^{\mathcal{M}^*}(\mathbf{s}_{n,1}) \right] \leq \frac{HR_{\max}}{\sigma} \mathbb{E} \left[\sum_{n=1}^N \sum_{h=1}^{H-1} \|f^{(n)}(\mathbf{x}_{n,h}) - f^*(\mathbf{x}_{n,h})\|_2 \right].$$

General recipe for PSRL regret analysis

Stochastic optimism. Since f^* and $f^{(n)}$ have the same conditional distribution,

$$\text{BayesRegret}(T) = \mathbb{E} \left[\sum_{n=1}^N V_{\pi^*, 1}^{\mathcal{M}^*}(\mathbf{s}_{n,1}) - V_{\pi_n, 1}^{\mathcal{M}_n}(\mathbf{s}_{n,1}) \right] + \mathbb{E} \left[\sum_{n=1}^N V_{\pi_n, 1}^{\mathcal{M}_n}(\mathbf{s}_{n,1}) - V_{\pi_n, 1}^{\mathcal{M}^*}(\mathbf{s}_{n,1}) \right]$$

Simulation lemma. The value estimation error is controlled by the difference between $f^{(n)}$ and f^* .

$$\mathbb{E} \left[\sum_{n=1}^N V_{\pi_n, 1}^{\mathcal{M}_n}(\mathbf{s}_{n,1}) - V_{\pi_n, 1}^{\mathcal{M}^*}(\mathbf{s}_{n,1}) \right] \leq \frac{HR_{\max}}{\sigma} \mathbb{E} \left[\sum_{n=1}^N \sum_{h=1}^{H-1} \|f^{(n)}(\mathbf{x}_{n,h}) - f^*(\mathbf{x}_{n,h})\|_2 \right].$$

GP concentration. Bound the differences between $f^{(n)}$ and f^* at $(\mathbf{x}_{n,h})_{n,h}$.

$$\frac{HR_{\max}}{\sigma} \mathbb{E} \left[\sum_{n=1}^N \sum_{h=1}^{H-1} \|f^{(n)}(\mathbf{x}_{n,h}) - f^*(\mathbf{x}_{n,h})\|_2 \right] \approx \mathcal{O}(H(d_s + d_a)\sqrt{T\gamma_T}).$$

General recipe for PSRL regret analysis

Stochastic optimism. Since f^* and $f^{(n)}$ have the same conditional distribution,

$$\text{BayesRegret}(T) = \mathbb{E} \left[\sum_{n=1}^N V_{\pi^*, 1}^{\mathcal{M}^*}(\mathbf{s}_{n,1}) - V_{\pi_n, 1}^{\mathcal{M}_n}(\mathbf{s}_{n,1}) \right] + \mathbb{E} \left[\sum_{n=1}^N V_{\pi_n, 1}^{\mathcal{M}_n}(\mathbf{s}_{n,1}) - V_{\pi_n, 1}^{\mathcal{M}^*}(\mathbf{s}_{n,1}) \right]$$

Simulation lemma. The value estimation error is controlled by the difference between $f^{(n)}$ and f^* .

$$\mathbb{E} \left[\sum_{n=1}^N V_{\pi_n, 1}^{\mathcal{M}_n}(\mathbf{s}_{n,1}) - V_{\pi_n, 1}^{\mathcal{M}^*}(\mathbf{s}_{n,1}) \right] \leq \frac{HR_{\max}}{\sigma} \mathbb{E} \left[\sum_{n=1}^N \sum_{h=1}^{H-1} \|f^{(n)}(\mathbf{x}_{n,h}) - f^*(\mathbf{x}_{n,h})\|_2 \right].$$

GP concentration. Bound the differences between $f^{(n)}$ and f^* at $(\mathbf{x}_{n,h})_{n,h}$.

$$\frac{HR_{\max}}{\sigma} \mathbb{E} \left[\sum_{n=1}^N \sum_{h=1}^{H-1} \|f^{(n)}(\mathbf{x}_{n,h}) - f^*(\mathbf{x}_{n,h})\|_2 \right] \approx \mathcal{O}(H(d_s + d_a)\sqrt{T\gamma_T}).$$

Problem: With positive probability, the states $\mathbf{s}_{n,h+1} = f^*(\mathbf{s}_{n,h}) + \epsilon_{n,h+1}$ exceed any finite bound.

Problems with unbounded states

Failure of uniform GP concentration. The supremum of a GP over an unbounded domain blows up.

$$\mathbb{E} \left[\sup_{\mathbf{x} \in \mathbb{B}^{d_s + d_a}(R)} |f_i^{(n)}(\mathbf{x}) - f_i^*(\mathbf{x})| \right] \gtrsim (d_s + d_a) \sqrt{\log(R)}.$$

Problems with unbounded states

Failure of uniform GP concentration. The supremum of a GP over an unbounded domain blows up.

$$\mathbb{E} \left[\sup_{\mathbf{x} \in \mathbb{B}^{d_s + d_a}(R)} |f_i^{(n)}(\mathbf{x}) - f_i^*(\mathbf{x})| \right] \gtrsim (d_s + d_a) \sqrt{\log(R)}.$$

Linear information gain. Take k to be a Matérn kernel or the Gaussian kernel and consider

$$\gamma_T(\sigma^2, \infty) := \sup_{\mathbf{x}_1, \dots, \mathbf{x}_T: \mathbf{x}_i \in \mathbb{R}^{d_s + d_a}} \frac{1}{2} \log \det \left(\frac{1}{\sigma^2} \mathbf{K}_T + \mathbf{I} \right).$$

Problems with unbounded states

Failure of uniform GP concentration. The supremum of a GP over an unbounded domain blows up.

$$\mathbb{E} \left[\sup_{\mathbf{x} \in \mathbb{B}^{d_s + d_a}(R)} |f_i^{(n)}(\mathbf{x}) - f_i^*(\mathbf{x})| \right] \gtrsim (d_s + d_a) \sqrt{\log(R)}.$$

Linear information gain. Take k to be a Matérn kernel or the Gaussian kernel and consider

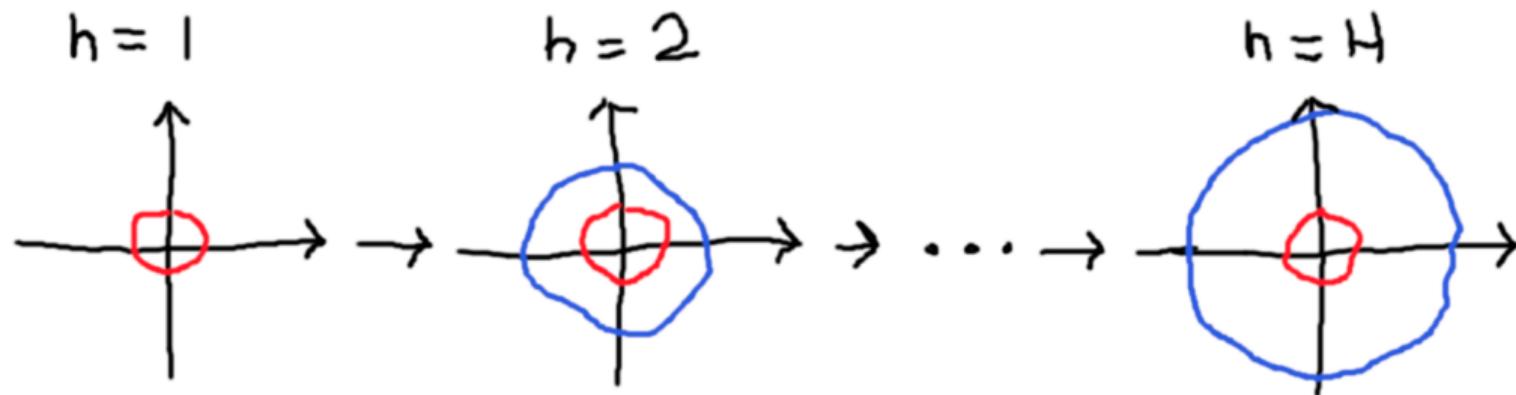
$$\gamma_T(\sigma^2, \infty) := \sup_{\mathbf{x}_1, \dots, \mathbf{x}_T: \mathbf{x}_i \in \mathbb{R}^{d_s + d_a}} \frac{1}{2} \log \det \left(\frac{1}{\sigma^2} \mathbf{K}_T + \mathbf{I} \right).$$

We can always choose $\mathbf{x}_1, \dots, \mathbf{x}_T$ to be arbitrarily far apart, which means

$$\gamma_T(\sigma^2, \infty) = \frac{1}{2} \log \det \left(\frac{1}{\sigma^2} \mathbf{I} + \mathbf{I} \right) = \frac{T}{2} \log \left(\frac{1 + \sigma^2}{\sigma^2} \right).$$

The fix

General idea



$$\|S_{n,1}\| = \|E_{n,1}\|, \quad \|S_{n,2}\| \leq \|f^*(x_{n,1})\| + \|E_{n,2}\|, \quad \|S_{n,H}\| \leq \|f^*(x_{n,H-1})\| + \|E_{n,H}\|$$

Tool 1: GP concentration

SHARPER BOUNDS FOR GAUSSIAN AND EMPIRICAL PROCESSES¹

BY M. TALAGRAND

Tool 1: GP concentration

SHARPER BOUNDS FOR GAUSSIAN AND EMPIRICAL PROCESSES¹

BY M. TALAGRAND

Let $f \sim \mathcal{GP}(0, k(\mathbf{x}, \mathbf{x}'))$ be a random draw from a zero mean Gaussian process with a covariance kernel $k : \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ that satisfies $C := \sup_{\mathbf{x} \in \mathcal{X}} k(\mathbf{x}, \mathbf{x}) < \infty$ and

$$\forall \mathbf{x}, \mathbf{x}' \in \mathbb{B}^{d_s + d_a}(R), \quad |k(\mathbf{x}, \mathbf{x}) - k(\mathbf{x}, \mathbf{x}')| \leq L \|\mathbf{x} - \mathbf{x}'\|_2.$$

Tool 1: GP concentration

SHARPER BOUNDS FOR GAUSSIAN AND EMPIRICAL PROCESSES¹

BY M. TALAGRAND

Let $f \sim \mathcal{GP}(0, k(\mathbf{x}, \mathbf{x}'))$ be a random draw from a zero mean Gaussian process with a covariance kernel $k : \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ that satisfies $C := \sup_{\mathbf{x} \in \mathcal{X}} k(\mathbf{x}, \mathbf{x}) < \infty$ and

$$\forall \mathbf{x}, \mathbf{x}' \in \mathbb{B}^{d_s + d_a}(R), \quad |k(\mathbf{x}, \mathbf{x}) - k(\mathbf{x}, \mathbf{x}')| \leq L \|\mathbf{x} - \mathbf{x}'\|_2.$$

Then there exists a universal constant D , such that for all $z \geq \sqrt{d_s} + \sqrt{2d_s(d_s + d_a)}$,

$$\mathbb{P}\left(\sup_{\mathbf{x} \in \mathbb{B}^{d_s + d_a}(R)} \|f^*(\mathbf{x})\|_2 \geq z\right) \leq 2d_s \left(\frac{D\sqrt{C^2 + 4LR}}{C\sqrt{2d_s(d_s + d_a)}} z\right)^{2(d_s + d_a)} \exp\left(-\frac{z^2}{2d_s C^2}\right).$$

Importantly, if $z \geq D(d_s + d_a)\sqrt{\log(1/\delta)}$, then $\mathbb{P}(\sup_{\mathbf{x} \in \mathbb{B}^{d_s + d_a}(R)} \|f^*(\mathbf{x})\|_2 \geq z) \leq \delta$.

Tool 2: indicator trick

For any finite collection of events $(A_h)_{h=1}^H$,

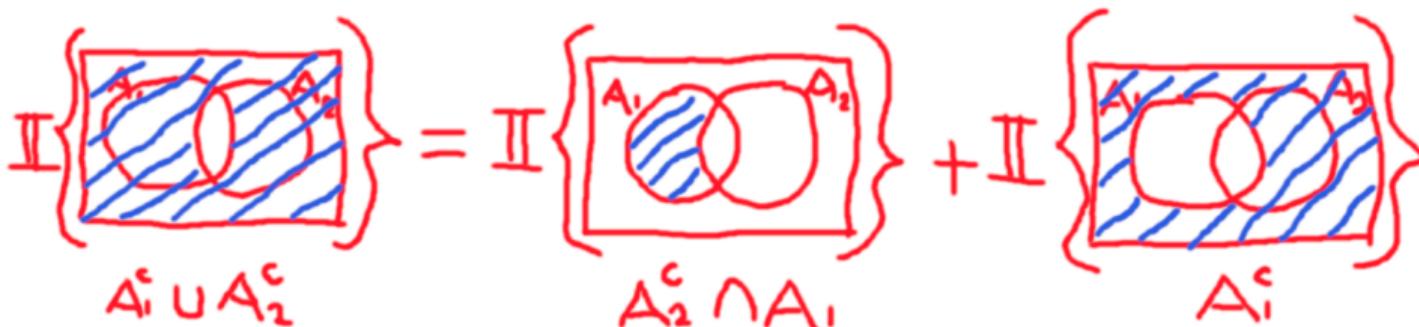
$$\mathbb{I}\{\cup_{h=1}^H A_h^c\} = \sum_{h=1}^H \mathbb{I}\{A_h^c\} \mathbb{I}\{\cap_{j=1}^{h-1} A_j\}.$$

Tool 2: indicator trick

For any finite collection of events $(A_h)_{h=1}^H$,

$$\mathbb{I}\{\cup_{h=1}^H A_h^c\} = \sum_{h=1}^H \mathbb{I}\{A_h^c\} \mathbb{I}\{\cap_{j=1}^{h-1} A_j\}.$$

Easy proof for $H = 2$.

$$\mathbb{I}\{A_1^c \cup A_2^c\} = \mathbb{I}\{A_1^c \cap A_2\} + \mathbb{I}\{A_2^c\}$$


Bounded states

Let $A_{n,h} := \{\|\mathbf{s}_{n,h}\|_2 \leq R_h\}$ and define the good event $A := \cap_{n=1}^N \cap_{h=1}^H A_{n,h}$.

Bounded states

Let $A_{n,h} := \{\|\mathbf{s}_{n,h}\|_2 \leq R_h\}$ and define the good event $A := \cap_{n=1}^N \cap_{h=1}^H A_{n,h}$. Using the indicator trick,

$$\begin{aligned}\mathbb{P}(A^c) &= \mathbb{E}[\mathbb{I}\{\cup_{n=1}^N \cup_{h=1}^H A_{n,h}^c\}] = \sum_{n=1}^N \sum_{h=1}^H \mathbb{E}[\mathbb{I}\{A_{n,h}^c\} \mathbb{I}\{(\cap_{i=1}^{n-1} \cap_{j=1}^H A_{i,j}) \cap (\cap_{j=1}^{h-1} A_{n,j})\}] \\ &\leq \sum_{n=1}^N \sum_{h=1}^H \mathbb{E}[\mathbb{I}\{\|\mathbf{s}_{n,h}\|_2 \geq R_h\} \mathbb{I}\{\|\mathbf{s}_{n,h-1}\|_2 \leq R_{h-1}\}].\end{aligned}$$

Bounded states

Let $A_{n,h} := \{\|\mathbf{s}_{n,h}\|_2 \leq R_h\}$ and define the good event $A := \cap_{n=1}^N \cap_{h=1}^H A_{n,h}$. Using the indicator trick,

$$\begin{aligned}\mathbb{P}(A^c) &= \mathbb{E}[\mathbb{I}\{\cup_{n=1}^N \cup_{h=1}^H A_{n,h}^c\}] = \sum_{n=1}^N \sum_{h=1}^H \mathbb{E}[\mathbb{I}\{A_{n,h}^c\} \mathbb{I}\{(\cap_{i=1}^{n-1} \cap_{j=1}^H A_{i,j}) \cap (\cap_{j=1}^{h-1} A_{n,j})\}] \\ &\leq \sum_{n=1}^N \sum_{h=1}^H \mathbb{E}[\mathbb{I}\{\|\mathbf{s}_{n,h}\|_2 \geq R_h\} \mathbb{I}\{\|\mathbf{s}_{n,h-1}\|_2 \leq R_{h-1}\}].\end{aligned}$$

If $\|\mathbf{s}_{n,h}\|_2 \leq R_h$, then $\|\mathbf{x}_{n,h}\|_2 \leq \sqrt{R_h^2 + R_a^2} =: \tilde{R}_h$. Therefore,

$$\begin{aligned}\mathbb{E}[\mathbb{I}\{\|\mathbf{s}_{n,h}\|_2 \geq R_h\} \mathbb{I}\{\|\mathbf{s}_{n,h-1}\|_2 \leq R_{h-1}\}] &\leq \mathbb{P}(\sup_{\mathbf{x} \in \mathbb{B}^{d_s+d_a}(\tilde{R}_{h-1})} \|f^*(\mathbf{x})\|_2 > R_h/2) + \mathbb{P}(\|\boldsymbol{\varepsilon}_{n,h}\|_2 > R_h/2) \\ &\leq 2d_s \left(\frac{D\sqrt{C^2 + 4L\tilde{R}_{h-1}}}{C\sqrt{2d_s(d_s+d_a)}} R_h \right)^{2(d_s+d_a)} \exp\left(-\frac{R_h^2}{8d_s C^2}\right) \\ &\quad + 2^{d_s/2} \exp\left(-\frac{R_h^2}{16\sigma^2}\right).\end{aligned}$$

Bounded states

Let $A_{n,h} := \{\|\mathbf{s}_{n,h}\|_2 \leq R_h\}$ and define the good event $A := \cap_{n=1}^N \cap_{h=1}^H A_{n,h}$. Using the indicator trick,

$$\begin{aligned}\mathbb{P}(A^c) &= \mathbb{E}[\mathbb{I}\{\cup_{n=1}^N \cup_{h=1}^H A_{n,h}^c\}] = \sum_{n=1}^N \sum_{h=1}^H \mathbb{E}[\mathbb{I}\{A_{n,h}^c\} \mathbb{I}\{(\cap_{i=1}^{n-1} \cap_{j=1}^H A_{i,j}) \cap (\cap_{j=1}^{h-1} A_{n,j})\}] \\ &\leq \sum_{n=1}^N \sum_{h=1}^H \mathbb{E}[\mathbb{I}\{\|\mathbf{s}_{n,h}\|_2 \geq R_h\} \mathbb{I}\{\|\mathbf{s}_{n,h-1}\|_2 \leq R_{h-1}\}].\end{aligned}$$

If $\|\mathbf{s}_{n,h}\|_2 \leq R_h$, then $\|\mathbf{x}_{n,h}\|_2 \leq \sqrt{R_h^2 + R_a^2} =: \tilde{R}_h$. Therefore,

$$\begin{aligned}\mathbb{E}[\mathbb{I}\{\|\mathbf{s}_{n,h}\|_2 \geq R_h\} \mathbb{I}\{\|\mathbf{s}_{n,h-1}\|_2 \leq R_{h-1}\}] &\leq \mathbb{P}(\sup_{\mathbf{x} \in \mathbb{B}^{d_s+d_a}(\tilde{R}_{h-1})} \|f^*(\mathbf{x})\|_2 > R_h/2) + \mathbb{P}(\|\boldsymbol{\varepsilon}_{n,h}\|_2 > R_h/2) \\ &\leq 2d_s \left(\frac{D\sqrt{C^2 + 4L\tilde{R}_{h-1}}}{C\sqrt{2d_s(d_s+d_a)}} R_h \right)^{2(d_s+d_a)} \exp\left(-\frac{R_h^2}{8d_s C^2}\right) \\ &\quad + 2^{d_s/2} \exp\left(-\frac{R_h^2}{16\sigma^2}\right).\end{aligned}$$

One can set each R_h such that $\tilde{R}_h \leq \tilde{C}_h(d_s + d_a)\sqrt{\log(T)}$,

$$\mathbb{E}[\mathbb{I}\{\|\mathbf{s}_{n,h}\|_2 \geq R_h\} \mathbb{I}\{\|\mathbf{s}_{n,h-1}\|_2 \leq R_{h-1}\}] \leq \frac{1}{T^2}, \quad \text{and} \quad \mathbb{P}(A^c) \leq \frac{1}{T}.$$

Main result

For a bounded and Lipschitz kernel function k , the Bayesian regret of PSRL (with $f_1^*, \dots, f_{d_s}^* \sim \mathcal{GP}(0, k(\mathbf{x}, \mathbf{x}'))$) satisfies

$$\text{BayesRegret}_T = \mathcal{O}\left(H(d_s + d_a)\sqrt{\gamma_T(\sigma^2, (d_s + d_a)\sqrt{\log(T)})T\log(T)}\right).$$

Main result

For a bounded and Lipschitz kernel function k , the Bayesian regret of PSRL (with $f_1^*, \dots, f_{d_s}^* \sim \mathcal{GP}(0, k(\mathbf{x}, \mathbf{x}'))$) satisfies

$$\text{BayesRegret}_T = \mathcal{O}\left(H(d_s + d_a)\sqrt{\gamma_T(\sigma^2, (d_s + d_a)\sqrt{\log(T)})T\log(T)}\right).$$

“Proof.” Follow the recipe from before, but under the good event A .

Main result

For a bounded and Lipschitz kernel function k , the Bayesian regret of PSRL (with $f_1^*, \dots, f_{d_s}^* \sim \mathcal{GP}(0, k(\mathbf{x}, \mathbf{x}'))$) satisfies

$$\text{BayesRegret}_T = \mathcal{O}\left(H(d_s + d_a)\sqrt{\gamma_T(\sigma^2, (d_s + d_a)\sqrt{\log(T)})T\log(T)}\right).$$

“Proof.” Follow the recipe from before, but under the good event A .

If k is the Matérn kernel (with smoothness parameter ν), then

$$\gamma_T(\sigma^2, (d_s + d_a)\sqrt{\log(T)}) = \mathcal{O}\left((d_s + d_a)^{2\nu} T^{\frac{d_s + d_a}{2\nu + d_s + d_a}} \log^{\max(\nu, \frac{2\nu}{\nu+1})}(T)\right),$$

and

$$\text{BayesRegret}_T = \mathcal{O}\left(H(d_s + d_a)^{1+\nu} T^{\frac{\nu+d_s+d_a}{2\nu+d_s+d_a}} \log^{1+\max(\frac{\nu}{2}, \frac{\nu}{\nu+1})}(T)\right).$$

Conclusion

In the Bayesian regret bound for GP-PSRL, you can get the information gain underneath the square root.

Conclusion

In the Bayesian regret bound for GP-PSRL, you can get the information gain underneath the square root.

What's left?

- What if the kernel is not uniformly (on $\mathcal{S} \times \mathcal{A}$) bounded/Lipschitz? (done)

Conclusion

In the Bayesian regret bound for GP-PSRL, you can get the information gain underneath the square root.

What's left?

- What if the kernel is not uniformly (on $\mathcal{S} \times \mathcal{A}$) bounded/Lipschitz? (done)
- What if an approximate posterior is used? (somewhat done)

Conclusion

In the Bayesian regret bound for GP-PSRL, you can get the information gain underneath the square root.

What's left?

- What if the kernel is not uniformly (on $\mathcal{S} \times \mathcal{A}$) bounded/Lipschitz? (done)
- What if an approximate posterior is used? (somewhat done)
- What about worst-case regret? (not done)

The end. Thank you!