Confidence sequences for generalised linear models via regret analysis
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Why are confidence bounds/sets/sequences interesting (for RL)?

Exploration-exploitation trade-offs (OFU, Thompson Sampling, etc.)

 Stopping rules for pure exploration

Safe exploration

Asymptotic optimality/instance-optimality
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We want to construct confidence sequences for GLMs without doing any actual work.
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Linear model.
+ Covariates X,...,X, € R?
* Responses Yy,...,Y, € R
* Likelihood p(Y;| Xy, 0%) = \/% exp (— (V2 — (0%, X1))?)
Log-likelihood loss. Define ¢;(0) = —log(p(Y;| Xy, 0)) = 1(Y; — (6%, X,))? + Hogf2m.

Adaptive design. X, depends on Xy,Y7,..., Xy 1,Y; 1.
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Objective and claim

For § € (0, 1], a §-confidence sequence for 6* is a sequence of sets ©1, 02, ..., such that

P(vn>1:0*€O,)>1-6.
Gold standard (e.g. OFUL). ©,, is the ellipsoid
On = {0 R IB=Ful 1y <nf
where 6y, := argmingega {3272, €(6) + 5z 1013}, An = X7, Xe X[, Bn = O(dlogn).

Online-to-confidence-set conversion. Use the regret bound of an online learning algorithm to determine 3,,.

Claim. We can recover or improve upon all confidence sequences for GLMs via OTCS.



Online-to-confidence-set conversion attempt 1
(don’t do this)
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Online linear regression

Protocol. Fort =1,2,..

.,

Environment reveals X; to the learner
Learner picks 6; € ©

Environment reveals Y: to the learner,
Learner incurs the loss ¢;(6:)

H DO~

Regret. The regret of 0™ := (01, ...,6,) w.r.t. a comparator § € © is

n
regretgn (0) Z (€e(0¢) — £0(0)) .

t=1
If the Vovk-Azoury-Warmuth forecaster (with parameter ) is used to generate 6", then

_ 1, - Y2
regretyn (0) < —[|0]13 + ————" L Jog det (v?*An + 1d) = O(d(logn)?).
Yy
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Online-to-confidence-set conversion (attempt 1)

Claim. For any comparators 01,02, ... and any strategy ™, the sets ©1, 0, ... form a §-CS, where

Op = {0 ceRe: i (€:(6) — £4(6n)) < regretyn (6,) + log}S} .

t=1

Proof. First,
> (€(0%) — €:(0n)) =D (€(0r) — £:(0n)) + > (€:(0%) — £:(61)) -
t=1 t=1 t=1
regretgn (07) < logg w.p.>1-4§
Therefore,

P <Vn >1 Z (€(0) — £:(0r)) < regretgn (Orn) + log ;) >1-56.
t=1



Online-to-confidence-set conversion (attempt 1)

Claim. For any comparators 01,02, ... and any strategy ™, the sets ©1, 0, ... form a §-CS, where

Op = {0 ceRe: i (€:(6) — £4(6n)) < regretyn (6,) + log}S} .

t=1

If it is known that ||0*||2 < B, then by plugging in the VAW regret bound and then completing some squares, we
obtain

O, :={0cR%: <maxY log det(v?A, + Id + +210g .
€ln) " ’

|979 ”A + 2Id



Online-to-confidence-set conversion (attempt 1)

Claim. For any comparators 01,02, ... and any strategy ™, the sets ©1, 0, ... form a §-CS, where

Op = {0 ceRe: i (€:(6) — £4(6n)) < regretyn (6,) + log}S} .

t=1

If it is known that ||0*||2 < B, then by plugging in the VAW regret bound and then completing some squares, we
obtain
Op = {9 ERY: 60— 0, ||A +aq < mr[mth log det(y2A,, + 1d) + +210g 6} .
2

Problem. For this confidence set, 8, = O(d(logn)?), whereas we should have 8,, = O(dlogn).

Can we remove the factor of max;cp,,] Y17



Yes
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Sequential probability assignment

Protocol. Fort =1,2,..

.,

Environment reveals X to the learner

Learner picks Q: € Ag with density ¢;

Environment reveals Y; to the learner,

Learner incurs the log loss £¢(q:) = —log [ exp(—£¢(0))q:(6) df

Rl S\ R

Regret. The regret of ¢" = (q1,...,qn) W.r.t. a comparator § € © is

regret Z ﬁt qt —Et 9))
t=1

If Vovk’s Aggregating Algorithm (a.k.a. the Exponentially Weighted Average forecaster) is used with the prior
Q1 = N(0,721d), then

regret n 0) < H0H2 + = log det ('yQA +1d) = O(dlogn)
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Claim. For any comparators 01,02, ... and any strategy ¢", the sets ©1, O, ... form a §-CS, where

O, = {6 eR?: i (€:(6) — £4(6n)) < regret n (0r) + log é} .

t=1

Proof. Exactly the same as before. >-7 ; (¢:(0*) — L¢(q¢)) is still the logarithm of a non-negative martingale.
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t=1
This time, if ||6*||2 < B, then by plugging in the VAA/EWA regret bound and completing some squares, we obtain
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Online-to-confidence-set conversion (attempt 2)

Claim. For any comparators 01,02, ... and any strategy ¢", the sets ©1, O, ... form a §-CS, where

O, = {6 eR?: i (€:(6) — £4(6n)) < regret n (0r) + log é} .

t=1
This time, if ||6*||2 < B, then by plugging in the VAA/EWA regret bound and completing some squares, we obtain

—~ 2
O, = {9 eR: 60— 0, < log det(y?A,, +1d) + % +2log %} .

2
An+7121d =

We now have 3, = O(dlogn).

Conclusion. Use regret bounds for sequential probability assignment.
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RL stuff

Bandits.

» Obvious applications to UCB algorithms (for generalised linear bandits)

» Other applications to batched bandit algorithms

Model-based RL.

 Applications to online (generalised) linear control

Model-free RL.

« A bit tricky. Perhaps we need a reduction to a game in which previous predictions influence
future responses

» Confidence sets for temporal difference estimators?

» New confidence sets for value functions of linear MDPs? (replace covering numbers by
data-dependent regret bounds)



The end. Thank you!



