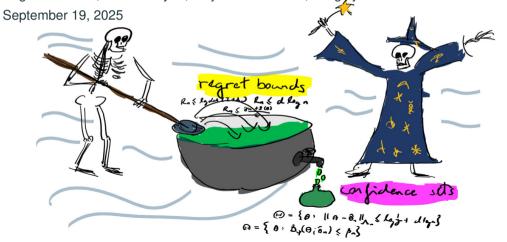
Confidence sequences for generalised linear models via regret analysis

Eugenio Clerico, Hamish Flynn, Wojciech Kotłowski, Gergely Neu

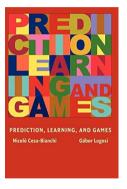


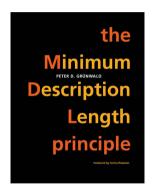
Why are confidence bounds/sets/sequences interesting (for RL)?

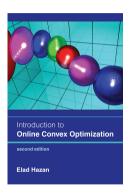
- Exploration-exploitation trade-offs (OFU, Thompson Sampling, etc.)
- Stopping rules for pure exploration
- Safe exploration
- Asymptotic optimality/instance-optimality

This work

Assume we know a bit about online learning.

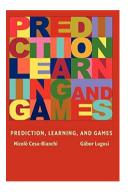


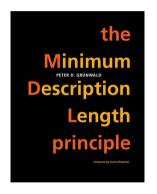


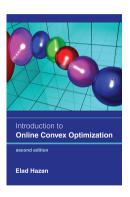


This work

Assume we know a bit about online learning.







We want to construct confidence sequences for GLMs without doing any actual work.

Linear model.

- Covariates $X_1, \ldots, X_n \in \mathbb{R}^d$
- Responses $Y_1, \ldots, Y_n \in \mathbb{R}$
- Likelihood $p(Y_t|X_t, \theta^*) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}(Y_t \langle \theta^*, X_t \rangle)^2\right)$

Linear model.

- Covariates $X_1, \ldots, X_n \in \mathbb{R}^d$
- Responses $Y_1, \ldots, Y_n \in \mathbb{R}$
- Likelihood $p(Y_t|X_t,\theta^\star) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}(Y_t \langle \theta^\star, X_t \rangle)^2\right)$

Log-likelihood loss. Define $\ell_t(\theta) = -\log(p(Y_t|X_t,\theta)) = \frac{1}{2}(Y_t - \langle \theta^\star, X_t \rangle)^2 + \frac{1}{2}\log(2\pi)$.

Linear model.

- Covariates $X_1, \ldots, X_n \in \mathbb{R}^d$
- Responses $Y_1, \ldots, Y_n \in \mathbb{R}$
- Likelihood $p(Y_t|X_t,\theta^\star) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}(Y_t \langle \theta^\star, X_t \rangle)^2\right)$

Log-likelihood loss. Define $\ell_t(\theta) = -\log(p(Y_t|X_t,\theta)) = \frac{1}{2}(Y_t - \langle \theta^\star, X_t \rangle)^2 + \frac{1}{2}\frac{\log(2\pi)}{2}$.

Linear model.

- Covariates $X_1, \ldots, X_n \in \mathbb{R}^d$
- Responses $Y_1, \ldots, Y_n \in \mathbb{R}$
- Likelihood $p(Y_t|X_t,\theta^\star) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}(Y_t \langle \theta^\star, X_t \rangle)^2\right)$

Log-likelihood loss. Define $\ell_t(\theta) = -\log(p(Y_t|X_t,\theta)) = \frac{1}{2}(Y_t - \langle \theta^\star, X_t \rangle)^2 + \frac{1}{2}\log(2\pi)$.

Adaptive design. X_t depends on $X_1, Y_1, \dots, X_{t-1}, Y_{t-1}$.

For $\delta \in (0,1]$, a δ -confidence sequence for θ^\star is a sequence of sets Θ_1,Θ_2,\ldots , such that

$$\mathbb{P}(\forall n \ge 1 : \theta^* \in \Theta_n) \ge 1 - \delta.$$

For $\delta \in (0,1]$, a δ -confidence sequence for θ^{\star} is a sequence of sets Θ_1,Θ_2,\ldots , such that

$$\mathbb{P}(\forall n \ge 1 : \theta^* \in \Theta_n) \ge 1 - \delta.$$

Gold standard (e.g. OFUL). Θ_n is the ellipsoid

$$\Theta_n := \left\{ \theta \in \mathbb{R}^d : \|\theta - \widehat{\theta}_n\|_{\Lambda_n + \frac{1}{\gamma^2} \mathrm{Id}}^2 \le \beta_n \right\} ,$$

where $\widehat{\theta}_n := \operatorname{argmin}_{\theta \in \mathbb{R}^d} \{ \sum_{t=1}^n \ell_t(\theta) + \frac{1}{2\gamma^2} \|\theta\|_2^2 \}, \ \Lambda_n = \sum_{t=1}^n X_t X_t^\top, \ \beta_n = \mathcal{O}(d\log n).$

For $\delta \in (0,1]$, a δ -confidence sequence for θ^{\star} is a sequence of sets Θ_1,Θ_2,\ldots , such that

$$\mathbb{P}(\forall n \ge 1 : \theta^* \in \Theta_n) \ge 1 - \delta.$$

Gold standard (e.g. OFUL). Θ_n is the ellipsoid

$$\Theta_n := \left\{ \theta \in \mathbb{R}^d : \|\theta - \widehat{\theta}_n\|_{\Lambda_n + \frac{1}{\gamma^2} \mathrm{Id}}^2 \le \beta_n \right\},\,$$

$$\text{ where } \widehat{\theta}_n := \mathop{\rm argmin}_{\theta \in \mathbb{R}^d} \{ \textstyle \sum_{t=1}^n \ell_t(\theta) + \frac{1}{2\gamma^2} \|\theta\|_2^2 \}, \ \Lambda_n = \textstyle \sum_{t=1}^n X_t X_t^\top, \ \beta_n = \mathcal{O}(d\log n).$$

Online-to-confidence-set conversion. Use the regret bound of an online learning algorithm to determine β_n .

For $\delta \in (0,1]$, a δ -confidence sequence for θ^* is a sequence of sets $\Theta_1, \Theta_2, \ldots$, such that

$$\mathbb{P}(\forall n \ge 1 : \theta^* \in \Theta_n) \ge 1 - \delta.$$

Gold standard (e.g. OFUL). Θ_n is the ellipsoid

$$\Theta_n := \left\{ \theta \in \mathbb{R}^d : \|\theta - \widehat{\theta}_n\|_{\Lambda_n + \frac{1}{\gamma^2} \mathrm{Id}}^2 \le \beta_n \right\},\,$$

 $\text{where } \widehat{\theta}_n := \mathop{\rm argmin}_{\theta \in \mathbb{R}^d} \{ \textstyle \sum_{t=1}^n \ell_t(\theta) + \frac{1}{2\gamma^2} \|\theta\|_2^2 \}, \ \Lambda_n = \textstyle \sum_{t=1}^n X_t X_t^\top, \ \beta_n = \mathcal{O}(d\log n).$

Online-to-confidence-set conversion. Use the regret bound of an online learning algorithm to determine β_n .

Claim. We can recover or improve upon all confidence sequences for GLMs via OTCS.

(don't do this)

Online linear regression

Protocol. For $t = 1, 2, \ldots, n$:

- 1. Environment reveals X_t to the learner
- **2.** Learner picks $\theta_t \in \Theta$
- 3. Environment reveals Y_t to the learner,
- 4. Learner incurs the loss $\ell_t(\theta_t)$

Online linear regression

Protocol. For $t = 1, 2, \ldots, n$:

- 1. Environment reveals X_t to the learner
- **2**. Learner picks $\theta_t \in \Theta$
- 3. Environment reveals Y_t to the learner,
- **4**. Learner incurs the loss $\ell_t(\theta_t)$

Regret. The regret of $\theta^n:=(\theta_1,\ldots,\theta_n)$ w.r.t. a comparator $\bar{\theta}\in\Theta$ is

$$\operatorname{regret}_{\theta^n}(\bar{\theta}) = \sum_{t=1}^n (\ell_t(\theta_t) - \ell_t(\bar{\theta})).$$

Online linear regression

Protocol. For $t = 1, 2, \ldots, n$:

- 1. Environment reveals X_t to the learner
- **2.** Learner picks $\theta_t \in \Theta$
- 3. Environment reveals Y_t to the learner,
- **4**. Learner incurs the loss $\ell_t(\theta_t)$

Regret. The regret of $\theta^n:=(\theta_1,\ldots,\theta_n)$ w.r.t. a comparator $\bar{\theta}\in\Theta$ is

$$\operatorname{regret}_{\theta^n}(\bar{\theta}) = \sum_{t=1}^n \left(\ell_t(\theta_t) - \ell_t(\bar{\theta}) \right).$$

If the Vovk-Azoury-Warmuth forecaster (with parameter γ) is used to generate θ^n , then

$$\operatorname{regret}_{\theta^n}(\bar{\theta}) \leq \frac{1}{2\gamma^2} \|\bar{\theta}\|_2^2 + \frac{\max_{t \in [n]} Y_t^2}{2} \log \det \left(\gamma^2 \Lambda_n + \operatorname{Id} \right) = \mathcal{O}(d(\log n)^2).$$

Claim. For any comparators $\bar{\theta}_1, \bar{\theta}_2, \ldots$ and any strategy θ^n , the sets $\Theta_1, \Theta_2, \ldots$ form a δ -CS, where

$$\Theta_n = \left\{ \theta \in \mathbb{R}^d : \sum_{t=1}^n \left(\ell_t(\theta) - \ell_t(\bar{\theta}_n) \right) \le \operatorname{regret}_{\theta^n}(\bar{\theta}_n) + \log \frac{1}{\delta} \right\}.$$

Claim. For any comparators $\bar{\theta}_1, \bar{\theta}_2, \ldots$ and any strategy θ^n , the sets $\Theta_1, \Theta_2, \ldots$ form a δ -CS, where

$$\Theta_n = \left\{ \theta \in \mathbb{R}^d : \sum_{t=1}^n \left(\ell_t(\theta) - \ell_t(\bar{\theta}_n) \right) \le \operatorname{regret}_{\theta^n}(\bar{\theta}_n) + \log \frac{1}{\delta} \right\}.$$

Proof. First,

$$\sum_{t=1}^{n} \left(\ell_t(\theta^*) - \ell_t(\bar{\theta}_n) \right) = \sum_{t=1}^{n} \left(\ell_t(\theta_t) - \ell_t(\bar{\theta}_n) \right) + \sum_{t=1}^{n} \left(\ell_t(\theta^*) - \ell_t(\theta_t) \right).$$

Claim. For any comparators $\bar{\theta}_1, \bar{\theta}_2, \ldots$ and any strategy θ^n , the sets $\Theta_1, \Theta_2, \ldots$ form a δ -CS, where

$$\Theta_n = \left\{ \theta \in \mathbb{R}^d : \sum_{t=1}^n \left(\ell_t(\theta) - \ell_t(\bar{\theta}_n) \right) \le \operatorname{regret}_{\theta^n}(\bar{\theta}_n) + \log \frac{1}{\delta} \right\}.$$

Proof. First,

$$\sum_{t=1}^{n} \left(\ell_t(\theta^*) - \ell_t(\bar{\theta}_n) \right) = \underbrace{\sum_{t=1}^{n} \left(\ell_t(\theta_t) - \ell_t(\bar{\theta}_n) \right)}_{\text{regret}_{\theta^n}(\bar{\theta}_n)} + \sum_{t=1}^{n} \left(\ell_t(\theta^*) - \ell_t(\theta_t) \right).$$

Claim. For any comparators $\bar{\theta}_1, \bar{\theta}_2, \ldots$ and any strategy θ^n , the sets $\Theta_1, \Theta_2, \ldots$ form a δ -CS, where

$$\Theta_n = \left\{ \theta \in \mathbb{R}^d : \sum_{t=1}^n \left(\ell_t(\theta) - \ell_t(\bar{\theta}_n) \right) \le \operatorname{regret}_{\theta^n}(\bar{\theta}_n) + \log \frac{1}{\delta} \right\}.$$

Proof. First,

$$\sum_{t=1}^{n} \left(\ell_t(\theta^*) - \ell_t(\bar{\theta}_n) \right) = \underbrace{\sum_{t=1}^{n} \left(\ell_t(\theta_t) - \ell_t(\bar{\theta}_n) \right)}_{\operatorname{regret}_{\theta^n}(\bar{\theta}_n)} + \underbrace{\sum_{t=1}^{n} \left(\ell_t(\theta^*) - \ell_t(\theta_t) \right)}_{\leq \log \frac{1}{\delta} \text{ w.p.} \geq 1 - \delta}.$$

Claim. For any comparators $\bar{\theta}_1, \bar{\theta}_2, \ldots$ and any strategy θ^n , the sets $\Theta_1, \Theta_2, \ldots$ form a δ -CS, where

$$\Theta_n = \left\{ \theta \in \mathbb{R}^d : \sum_{t=1}^n \left(\ell_t(\theta) - \ell_t(\bar{\theta}_n) \right) \le \operatorname{regret}_{\theta^n}(\bar{\theta}_n) + \log \frac{1}{\delta} \right\}.$$

Proof. First,

$$\sum_{t=1}^{n} \left(\ell_t(\theta^*) - \ell_t(\bar{\theta}_n) \right) = \underbrace{\sum_{t=1}^{n} \left(\ell_t(\theta_t) - \ell_t(\bar{\theta}_n) \right)}_{\text{regret}_{\theta^n}(\bar{\theta}_n)} + \underbrace{\sum_{t=1}^{n} \left(\ell_t(\theta^*) - \ell_t(\theta_t) \right)}_{\leq \log \frac{1}{\delta} \text{ w.p.} \geq 1 - \delta}.$$

Therefore,

$$\mathbb{P}\left(\forall n \geq 1, \sum_{t=1}^{n} \left(\ell_t(\theta^*) - \ell_t(\bar{\theta}_n)\right) \leq \operatorname{regret}_{\theta^n}(\bar{\theta}_n) + \log \frac{1}{\delta}\right) \geq 1 - \delta.$$

Claim. For any comparators $\bar{\theta}_1, \bar{\theta}_2, \ldots$ and any strategy θ^n , the sets $\Theta_1, \Theta_2, \ldots$ form a δ -CS, where

$$\Theta_n = \left\{ \theta \in \mathbb{R}^d : \sum_{t=1}^n \left(\ell_t(\theta) - \ell_t(\bar{\theta}_n) \right) \le \operatorname{regret}_{\theta^n}(\bar{\theta}_n) + \log \frac{1}{\delta} \right\}.$$

If it is known that $\|\theta^*\|_2 \leq B$, then by plugging in the VAW regret bound and then completing some squares, we obtain

$$\Theta_n := \left\{ \theta \in \mathbb{R}^d : \|\theta - \widehat{\theta}_n\|_{\Lambda_n + \frac{1}{\gamma^2} \mathrm{Id}}^2 \le \max_{t \in [n]} Y_t^2 \log \det(\gamma^2 \Lambda_n + \mathrm{Id}) + \frac{B^2}{\gamma^2} + 2 \log \frac{1}{\delta} \right\}.$$

Claim. For any comparators $\bar{\theta}_1, \bar{\theta}_2, \ldots$ and any strategy θ^n , the sets $\Theta_1, \Theta_2, \ldots$ form a δ -CS, where

$$\Theta_n = \left\{ \theta \in \mathbb{R}^d : \sum_{t=1}^n \left(\ell_t(\theta) - \ell_t(\bar{\theta}_n) \right) \le \operatorname{regret}_{\theta^n}(\bar{\theta}_n) + \log \frac{1}{\delta} \right\}.$$

If it is known that $\|\theta^*\|_2 \le B$, then by plugging in the VAW regret bound and then completing some squares, we obtain

$$\Theta_n := \left\{ \theta \in \mathbb{R}^d : \|\theta - \widehat{\theta}_n\|_{\Lambda_n + \frac{1}{\gamma^2} \mathrm{Id}}^2 \le \max_{t \in [n]} Y_t^2 \log \det(\gamma^2 \Lambda_n + \mathrm{Id}) + \frac{B^2}{\gamma^2} + 2 \log \frac{1}{\delta} \right\}.$$

Problem. For this confidence set, $\beta_n = \mathcal{O}(d(\log n)^2)$, whereas we should have $\beta_n = \mathcal{O}(d\log n)$.

Can we remove the factor of $\max_{t \in [n]} Y_t^2$?

(do this)

Sequential probability assignment

Protocol. For $t = 1, 2, \ldots, n$:

- 1. Environment reveals X_t to the learner
- 2. Learner picks $Q_t \in \Delta_{\Theta}$ with density q_t
- 3. Environment reveals Y_t to the learner,
- 4. Learner incurs the log loss $\mathcal{L}_t(q_t) = -\log \int \exp(-\ell_t(\theta)) q_t(\theta) d\theta$

Sequential probability assignment

Protocol. For $t = 1, 2, \ldots, n$:

- 1. Environment reveals X_t to the learner
- **2**. Learner picks $Q_t \in \Delta_{\Theta}$ with density q_t
- 3. Environment reveals Y_t to the learner,
- **4**. Learner incurs the log loss $\mathcal{L}_t(q_t) = -\log \int \exp(-\ell_t(\theta))q_t(\theta) d\theta$

Regret. The regret of $q^n=(q_1,\ldots,q_n)$ w.r.t. a comparator $\bar{\theta}\in\Theta$ is

$$\operatorname{regret}_{q^n}(\bar{\theta}) = \sum_{t=1}^n \left(\mathcal{L}_t(q_t) - \ell_t(\bar{\theta}) \right).$$

Sequential probability assignment

Protocol. For $t = 1, 2, \ldots, n$:

- 1. Environment reveals X_t to the learner
- **2.** Learner picks $Q_t \in \Delta_{\Theta}$ with density q_t
- 3. Environment reveals Y_t to the learner,
- 4. Learner incurs the log loss $\mathcal{L}_t(q_t) = -\log\int\exp(-\ell_t(\theta))q_t(\theta)\;\mathrm{d}\theta$

Regret. The regret of $q^n=(q_1,\ldots,q_n)$ w.r.t. a comparator $\bar{\theta}\in\Theta$ is

$$\operatorname{regret}_{q^n}(\bar{\theta}) = \sum_{t=1}^n \left(\mathcal{L}_t(q_t) - \ell_t(\bar{\theta}) \right).$$

If Vovk's Aggregating Algorithm (a.k.a. the Exponentially Weighted Average forecaster) is used with the prior $Q_1 = \mathcal{N}(0, \gamma^2 \mathrm{Id})$, then

$$\operatorname{regret}_{q^n}(\bar{\theta}) \le \frac{1}{2\gamma^2} \|\bar{\theta}\|_2^2 + \frac{1}{2} \log \det (\gamma^2 \Lambda_n + \operatorname{Id}) = \mathcal{O}(d \log n)$$

Claim. For any comparators $\bar{\theta}_1, \bar{\theta}_2, \ldots$ and any strategy q^n , the sets $\Theta_1, \Theta_2, \ldots$ form a δ -CS, where

$$\Theta_n = \left\{ \theta \in \mathbb{R}^d : \sum_{t=1}^n \left(\ell_t(\theta) - \ell_t(\bar{\theta}_n) \right) \le \operatorname{regret}_{q^n}(\bar{\theta}_n) + \log \frac{1}{\delta} \right\}.$$

Claim. For any comparators $\bar{\theta}_1, \bar{\theta}_2, \ldots$ and any strategy q^n , the sets $\Theta_1, \Theta_2, \ldots$ form a δ -CS, where

$$\Theta_n = \left\{ \theta \in \mathbb{R}^d : \sum_{t=1}^n \left(\ell_t(\theta) - \ell_t(\bar{\theta}_n) \right) \le \operatorname{regret}_{q^n}(\bar{\theta}_n) + \log \frac{1}{\delta} \right\}.$$

Proof. Exactly the same as before. $\sum_{t=1}^{n} (\ell_t(\theta^\star) - \mathcal{L}_t(q_t))$ is still the logarithm of a non-negative martingale.

Claim. For any comparators $\bar{\theta}_1, \bar{\theta}_2, \ldots$ and any strategy q^n , the sets $\Theta_1, \Theta_2, \ldots$ form a δ -CS, where

$$\Theta_n = \left\{ \theta \in \mathbb{R}^d : \sum_{t=1}^n \left(\ell_t(\theta) - \ell_t(\bar{\theta}_n) \right) \le \operatorname{regret}_{q^n}(\bar{\theta}_n) + \log \frac{1}{\delta} \right\}.$$

This time, if $\|\theta^\star\|_2 \le B$, then by plugging in the VAA/EWA regret bound and completing some squares, we obtain

$$\Theta_n := \left\{ \theta \in \mathbb{R}^d : \|\theta - \widehat{\theta}_n\|_{\Lambda_n + \frac{1}{\gamma^2} \operatorname{Id}}^2 \le \log \det(\gamma^2 \Lambda_n + \operatorname{Id}) + \frac{B^2}{\gamma^2} + 2 \log \frac{1}{\delta} \right\}.$$

Claim. For any comparators $\bar{\theta}_1, \bar{\theta}_2, \ldots$ and any strategy q^n , the sets $\Theta_1, \Theta_2, \ldots$ form a δ -CS, where

$$\Theta_n = \left\{ \theta \in \mathbb{R}^d : \sum_{t=1}^n \left(\ell_t(\theta) - \ell_t(\bar{\theta}_n) \right) \le \operatorname{regret}_{q^n}(\bar{\theta}_n) + \log \frac{1}{\delta} \right\}.$$

This time, if $\|\theta^\star\|_2 \leq B$, then by plugging in the VAA/EWA regret bound and completing some squares, we obtain

$$\Theta_n := \left\{ \theta \in \mathbb{R}^d : \|\theta - \widehat{\theta}_n\|_{\Lambda_n + \frac{1}{\gamma^2} \operatorname{Id}}^2 \le \log \det(\gamma^2 \Lambda_n + \operatorname{Id}) + \frac{B^2}{\gamma^2} + 2 \log \frac{1}{\delta} \right\}.$$

We now have $\beta_n = \mathcal{O}(d \log n)$.

Claim. For any comparators $\bar{\theta}_1, \bar{\theta}_2, \ldots$ and any strategy q^n , the sets $\Theta_1, \Theta_2, \ldots$ form a δ -CS, where

$$\Theta_n = \left\{ \theta \in \mathbb{R}^d : \sum_{t=1}^n \left(\ell_t(\theta) - \ell_t(\bar{\theta}_n) \right) \le \operatorname{regret}_{q^n}(\bar{\theta}_n) + \log \frac{1}{\delta} \right\}.$$

This time, if $\|\theta^\star\|_2 \le B$, then by plugging in the VAA/EWA regret bound and completing some squares, we obtain

$$\Theta_n := \left\{ \theta \in \mathbb{R}^d : \|\theta - \widehat{\theta}_n\|_{\Lambda_n + \frac{1}{\gamma^2} \operatorname{Id}}^2 \le \log \det(\gamma^2 \Lambda_n + \operatorname{Id}) + \frac{B^2}{\gamma^2} + 2 \log \frac{1}{\delta} \right\}.$$

We now have $\beta_n = \mathcal{O}(d \log n)$.

Conclusion. Use regret bounds for sequential probability assignment.

What about reinforcement learning?

RL stuff

Bandits.

- Obvious applications to UCB algorithms (for generalised linear bandits)
- Other applications to batched bandit algorithms

RL stuff

Bandits.

- Obvious applications to UCB algorithms (for generalised linear bandits)
- · Other applications to batched bandit algorithms

Model-based RL.

Applications to online (generalised) linear control

RL stuff

Bandits.

- Obvious applications to UCB algorithms (for generalised linear bandits)
- · Other applications to batched bandit algorithms

Model-based RL.

Applications to online (generalised) linear control

Model-free RL.

- A bit tricky. Perhaps we need a reduction to a game in which previous predictions influence future responses
- Confidence sets for temporal difference estimators?
- New confidence sets for value functions of linear MDPs? (replace covering numbers by data-dependent regret bounds)

