Confidence Sequences for Generalised Linear Models via Regret Analysis

Warmest Thanks

Eugenio Clerico

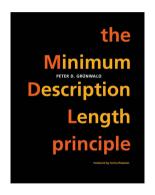
Wojciech Kotłowski

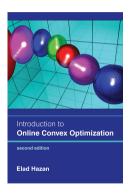
Gergely Neu

1

This Work

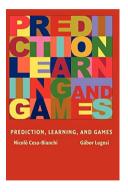
Assume we know a bit about online learning (or universal coding).

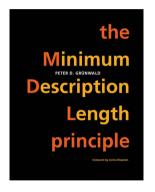


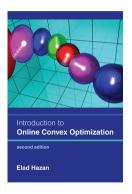


This Work

Assume we know a bit about online learning (or universal coding).







We want to construct confidence sequences for GLMs without doing any actual work.

Generalised Linear Model:

- Covariates $X_1, \ldots, X_n \in \mathbb{R}^d$
- Responses $Y_1, \ldots, Y_n \in \mathbb{R}$
- Likelihood $p(Y_t|X_t, \theta^*) = \exp(\langle \theta^*, x \rangle y \psi(\langle \theta^*, x \rangle))h(y)$

The log-partition function $\psi:\mathbb{R}\to\mathbb{R}$ is convex.

Generalised Linear Model:

- Covariates $X_1, \ldots, X_n \in \mathbb{R}^d$
- Responses $Y_1, \ldots, Y_n \in \mathbb{R}$
- Likelihood $p(Y_t|X_t, \theta^*) = \exp(\langle \theta^*, x \rangle y \psi(\langle \theta^*, x \rangle))h(y)$

The log-partition function $\psi:\mathbb{R}\to\mathbb{R}$ is convex.

Log-Likelihood Loss: Define $\ell_t(\theta) = -\log(p(Y_t|X_t,\theta))$.

Generalised Linear Model:

- Covariates $X_1, \ldots, X_n \in \mathbb{R}^d$
- Responses $Y_1, \ldots, Y_n \in \mathbb{R}$
- Likelihood $p(Y_t|X_t, \theta^*) = \exp(\langle \theta^*, x \rangle y \psi(\langle \theta^*, x \rangle))h(y)$

The log-partition function $\psi : \mathbb{R} \to \mathbb{R}$ is convex.

Log-Likelihood Loss: Define $\ell_t(\theta) = -\log(p(Y_t|X_t,\theta))$.

Adaptive Design: X_t depends on $X_1, Y_1, \dots, X_{t-1}, Y_{t-1}$.

Generalised Linear Model:

- Covariates $X_1, \ldots, X_n \in \mathbb{R}^d$
- Responses $Y_1, \ldots, Y_n \in \mathbb{R}$
- Likelihood $p(Y_t|X_t, \theta^\star) = \exp\left(\langle \theta^\star, x \rangle y \psi(\langle \theta^\star, x \rangle)\right) h(y)$

The log-partition function $\psi : \mathbb{R} \to \mathbb{R}$ is convex.

Log-Likelihood Loss: Define $\ell_t(\theta) = -\log(p(Y_t|X_t,\theta))$.

Adaptive Design: X_t depends on $X_1, Y_1, \dots, X_{t-1}, Y_{t-1}$.

Oblivious Design: X_t does not depend on Y_1, \ldots, Y_{t-1} .

Adaptive Design: For $\delta \in (0,1]$, a δ -confidence sequence for θ^\star is a sequence of sets $\Theta_1, \Theta_2, \ldots$, such that $\mathbb{P}(\exists n \geq 1: \theta^\star \notin \Theta_n) \leq \delta \,.$

Adaptive Design: For $\delta \in (0,1]$, a δ -confidence sequence for θ^{\star} is a sequence of sets $\Theta_1, \Theta_2, \ldots$, such that

$$\mathbb{P}(\exists n \ge 1 : \theta^* \notin \Theta_n) \le \delta.$$

Oblivious Design: A δ -confidence set for θ^* is a set Θ_n , such that

$$\mathbb{P}(\theta^* \notin \Theta_n) \le \delta.$$

Adaptive Design: For $\delta \in (0,1]$, a δ -confidence sequence for θ^{\star} is a sequence of sets $\Theta_1, \Theta_2, \ldots$, such that

$$\mathbb{P}(\exists n \ge 1 : \theta^* \notin \Theta_n) \le \delta.$$

Oblivious Design: A δ -confidence set for θ^* is a set Θ_n , such that

$$\mathbb{P}(\theta^* \notin \Theta_n) \le \delta.$$

In this talk, we will (mostly) focus on sets of the form

$$\Theta_n = \left\{ \theta : \sum_{t=1}^n \ell_t(\theta) - \inf_{\theta' \in \mathbb{R}^d} \sum_{t=1}^n \ell_t(\theta') \le \beta_n \right\}$$

Adaptive Design: For $\delta \in (0,1]$, a δ -confidence sequence for θ^{\star} is a sequence of sets $\Theta_1, \Theta_2, \ldots$, such that

$$\mathbb{P}(\exists n \geq 1 : \theta^* \notin \Theta_n) \leq \delta.$$

Oblivious Design: A δ -confidence set for θ^* is a set Θ_n , such that

$$\mathbb{P}(\theta^* \notin \Theta_n) \le \delta.$$

In this talk, we will (mostly) focus on sets of the form

$$\Theta_n = \left\{ \theta : \sum_{t=1}^n \ell_t(\theta) - \inf_{\theta' \in \mathbb{R}^d} \sum_{t=1}^n \ell_t(\theta') \le \beta_n \right\}$$

Online-to-confidence-set conversion: Use the output and/or regret bound of an online learning algorithm to determine β_n .

Adaptive Design: For $\delta \in (0,1]$, a δ -confidence sequence for θ^{\star} is a sequence of sets Θ_1,Θ_2,\ldots , such that

$$\mathbb{P}(\exists n \geq 1 : \theta^* \notin \Theta_n) \leq \delta.$$

Oblivious Design: A δ -confidence set for θ^* is a set Θ_n , such that

$$\mathbb{P}(\theta^* \notin \Theta_n) \le \delta.$$

In this talk, we will (mostly) focus on sets of the form

$$\Theta_n = \left\{ \theta : \sum_{t=1}^n \ell_t(\theta) - \inf_{\theta' \in \mathbb{R}^d} \sum_{t=1}^n \ell_t(\theta') \le \beta_n \right\}$$

Online-to-confidence-set conversion: Use the output and/or regret bound of an online learning algorithm to determine β_n .

Claim: We can recover all confidence sequences for GLMs via OTCS (at least all confidence sequences with non-asymptotic coverage guarantees).

Online-To-Confidence-Set Conversion

(for adaptive design)

Protocol: For $t = 1, 2, \ldots, n$:

- 1. Environment reveals X_t to the learner
- 2. Learner picks $Q_t \in \Delta_{\Theta}$ with density q_t
- 3. Environment reveals Y_t to the learner,
- 4. Learner incurs the log loss $\mathcal{L}_t(q_t) = -\log \int \exp(-\ell_t(\theta)) q_t(\theta) d\theta$

Protocol: For $t = 1, 2, \ldots, n$:

- 1. Environment reveals X_t to the learner
- 2. Learner picks $Q_t \in \Delta_{\Theta}$ with density q_t
- 3. Environment reveals Y_t to the learner,
- 4. Learner incurs the log loss $\mathcal{L}_t(q_t) = -\log \int \exp(-\ell_t(\theta)) q_t(\theta) d\theta$

$$q^n=(q_1,\ldots,q_n)$$
 must be predictable w.r.t. $\mathbb{F}=(\mathcal{F}_t)_{t=0}^n$, where $\mathcal{F}_t=\sigma(X_1,Y_1,\ldots,X_t,Y_t,X_{t+1})$.

Protocol: For $t = 1, 2, \ldots, n$:

- 1. Environment reveals X_t to the learner
- 2. Learner picks $Q_t \in \Delta_{\Theta}$ with density q_t
- 3. Environment reveals Y_t to the learner,
- 4. Learner incurs the log loss $\mathcal{L}_t(q_t) = -\log \int \exp(-\ell_t(\theta)) q_t(\theta) d\theta$

 $q^n=(q_1,\ldots,q_n)$ must be predictable w.r.t. $\mathbb{F}=(\mathcal{F}_t)_{t=0}^n$, where $\mathcal{F}_t=\sigma(X_1,Y_1,\ldots,X_t,Y_t,X_{t+1})$.

Regret: The regret of q^n w.r.t. a comparator $\bar{\theta} \in \Theta$ is

$$\operatorname{regret}_{q^n}(\bar{\theta}) = \sum_{t=1}^n \left(\mathcal{L}_t(q_t) - \ell_t(\bar{\theta}) \right).$$

Protocol: For $t = 1, 2, \ldots, n$:

- 1. Environment reveals X_t to the learner
- 2. Learner picks $Q_t \in \Delta_{\Theta}$ with density q_t
- 3. Environment reveals Y_t to the learner,
- 4. Learner incurs the log loss $\mathcal{L}_t(q_t) = -\log \int \exp(-\ell_t(\theta)) q_t(\theta) d\theta$

 $q^n=(q_1,\ldots,q_n)$ must be predictable w.r.t. $\mathbb{F}=(\mathcal{F}_t)_{t=0}^n$, where $\mathcal{F}_t=\sigma(X_1,Y_1,\ldots,X_t,Y_t,X_{t+1})$.

Regret: The regret of q^n w.r.t. a comparator $\bar{\theta} \in \Theta$ is

$$\operatorname{regret}_{q^n}(\bar{\theta}) = \sum_{t=1}^n \left(\mathcal{L}_t(q_t) - \ell_t(\bar{\theta}) \right).$$

The minimax regret $\inf_{q^n}\sup_{\bar{\theta}}\operatorname{regret}_{q^n}(\bar{\theta})$ for linear models (and some GLMs) is of the order $d\log(n)$.

Protocol: For $t = 1, 2, \ldots, n$:

- 1. Environment reveals X_t to the learner
- 2. Learner picks $Q_t \in \Delta_{\Theta}$ with density q_t
- 3. Environment reveals Y_t to the learner,
- 4. Learner incurs the log loss $\mathcal{L}_t(q_t) = -\log \int \exp(-\ell_t(\theta)) q_t(\theta) d\theta$

 $q^n=(q_1,\ldots,q_n)$ must be predictable w.r.t. $\mathbb{F}=(\mathcal{F}_t)_{t=0}^n$, where $\mathcal{F}_t=\sigma(X_1,Y_1,\ldots,X_t,Y_t,X_{t+1})$.

Regret: The regret of q^n w.r.t. a comparator $\bar{\theta} \in \Theta$ is

$$\operatorname{regret}_{q^n}(\bar{\theta}) = \sum_{t=1}^n \left(\mathcal{L}_t(q_t) - \ell_t(\bar{\theta}) \right).$$

The minimax regret $\inf_{q^n}\sup_{\bar{\theta}}\operatorname{regret}_{q^n}(\bar{\theta})$ for linear models (and some GLMs) is of the order $d\log(n)$.

Note: This can be made more general by playing distributions on $\mathcal Y$ (see our paper).

For any sequence of comparators $\bar{\theta}_1, \bar{\theta}_2, \ldots$ and any $\mathbb F$ -predictable q^n , the sets $\Theta_1, \Theta_2, \ldots$ form a δ -CS, where

$$\Theta_n = \left\{ \theta \in \mathbb{R}^d : \sum_{t=1}^n \left(\ell_t(\theta) - \ell_t(\bar{\theta}_n) \right) \le \operatorname{regret}_{q^n}(\bar{\theta}_n) + \log \frac{1}{\delta} \right\}.$$

For any sequence of comparators $\bar{\theta}_1, \bar{\theta}_2, \ldots$ and any \mathbb{F} -predictable q^n , the sets $\Theta_1, \Theta_2, \ldots$ form a δ -CS, where

$$\Theta_n = \left\{ \theta \in \mathbb{R}^d : \sum_{t=1}^n \left(\ell_t(\theta) - \ell_t(\bar{\theta}_n) \right) \le \operatorname{regret}_{q^n}(\bar{\theta}_n) + \log \frac{1}{\bar{\delta}} \right\}.$$

Proof. First,

$$\sum_{t=1}^{n} \left(\ell_t(\theta^*) - \ell_t(\bar{\theta}_n) \right) = \sum_{t=1}^{n} \left(\mathcal{L}_t(q_t) - \ell_t(\bar{\theta}_n) \right) + \sum_{t=1}^{n} \left(\ell_t(\theta^*) - \mathcal{L}_t(q_t) \right).$$

For any sequence of comparators $\bar{\theta}_1, \bar{\theta}_2, \ldots$ and any \mathbb{F} -predictable q^n , the sets $\Theta_1, \Theta_2, \ldots$ form a δ -CS, where

$$\Theta_n = \left\{ \theta \in \mathbb{R}^d : \sum_{t=1}^n \left(\ell_t(\theta) - \ell_t(\bar{\theta}_n) \right) \le \operatorname{regret}_{q^n}(\bar{\theta}_n) + \log \frac{1}{\delta} \right\}.$$

Proof. First,

$$\sum_{t=1}^{n} \left(\ell_t(\theta^*) - \ell_t(\bar{\theta}_n) \right) = \underbrace{\sum_{t=1}^{n} \left(\mathcal{L}_t(q_t) - \ell_t(\bar{\theta}_n) \right)}_{\text{regret}_{q^n}(\bar{\theta}_n)} + \sum_{t=1}^{n} \left(\ell_t(\theta^*) - \mathcal{L}_t(q_t) \right).$$

For any sequence of comparators $\bar{\theta}_1, \bar{\theta}_2, \ldots$ and any \mathbb{F} -predictable q^n , the sets $\Theta_1, \Theta_2, \ldots$ form a δ -CS, where

$$\Theta_n = \left\{ \theta \in \mathbb{R}^d : \sum_{t=1}^n \left(\ell_t(\theta) - \ell_t(\bar{\theta}_n) \right) \le \operatorname{regret}_{q^n}(\bar{\theta}_n) + \log \frac{1}{\delta} \right\}.$$

Proof. First,

$$\sum_{t=1}^{n} \left(\ell_t(\theta^*) - \ell_t(\bar{\theta}_n) \right) = \underbrace{\sum_{t=1}^{n} \left(\mathcal{L}_t(q_t) - \ell_t(\bar{\theta}_n) \right)}_{\text{regret}_{q^n}(\bar{\theta}_n)} + \sum_{t=1}^{n} \left(\ell_t(\theta^*) - \mathcal{L}_t(q_t) \right).$$

Next, we notice that the second term is the logarithm of a non-negative \mathbb{F} -martingale.

$$\exp\left(\sum_{t=1}^{n} \left(\ell_t(\theta^*) - \mathcal{L}_t(q_t)\right)\right) = \prod_{t=1}^{n} \int \frac{p(Y_t|X_t, \theta)}{p(Y_t|X_t, \theta^*)} q_t(\theta) d\theta.$$

For any sequence of comparators $\bar{\theta}_1, \bar{\theta}_2, \ldots$ and any \mathbb{F} -predictable q^n , the sets $\Theta_1, \Theta_2, \ldots$ form a δ -CS, where

$$\Theta_n = \left\{ \theta \in \mathbb{R}^d : \sum_{t=1}^n \left(\ell_t(\theta) - \ell_t(\bar{\theta}_n) \right) \le \operatorname{regret}_{q^n}(\bar{\theta}_n) + \log \frac{1}{\delta} \right\}.$$

Proof. First,

$$\sum_{t=1}^{n} \left(\ell_t(\theta^*) - \ell_t(\bar{\theta}_n) \right) = \underbrace{\sum_{t=1}^{n} \left(\mathcal{L}_t(q_t) - \ell_t(\bar{\theta}_n) \right)}_{\text{regret}_{q^n}(\bar{\theta}_n)} + \sum_{t=1}^{n} \left(\ell_t(\theta^*) - \mathcal{L}_t(q_t) \right).$$

Next, we notice that the second term is the logarithm of a non-negative F-martingale.

$$\exp\left(\sum_{t=1}^n \left(\ell_t(\theta^*) - \mathcal{L}_t(q_t)\right)\right) = \prod_{t=1}^n \int \frac{p(Y_t|X_t,\theta)}{p(Y_t|X_t,\theta^*)} q_t(\theta) d\theta.$$

Therefore,

$$\mathbb{P}\left(\exists n \geq 1, \sum_{t=1}^{n} \left(\ell_t(\theta^*) - \ell_t(\bar{\theta}_n)\right) \geq \operatorname{regret}_{q^n}(\bar{\theta}_n) + \log \frac{1}{\bar{\delta}}\right) \leq \delta.$$

Online-To-Confidence-Set Conversion

(for oblivious design)

Transductive Sequential Probability Assignment

Protocol: The environment reveals $X_1, \ldots, X_n \in \mathbb{R}^d$. For $t = 1, 2, \ldots, n$:

- 1. Learner picks $Q_t \in \Delta_{\Theta}$ with density q_t
- 2. Environment reveals $Y_t \in \mathbb{R}$ to the learner,
- 3. Learner incurs the log loss $\mathcal{L}_t(q_t) = -\log \int \exp(-\ell_t(\theta)) q_t(\theta) d\theta$

Transductive Sequential Probability Assignment

Protocol: The environment reveals $X_1, \ldots, X_n \in \mathbb{R}^d$. For $t = 1, 2, \ldots, n$:

- 1. Learner picks $Q_t \in \Delta_{\Theta}$ with density q_t
- 2. Environment reveals $Y_t \in \mathbb{R}$ to the learner,
- 3. Learner incurs the log loss $\mathcal{L}_t(q_t) = -\log \int \exp(-\ell_t(\theta)) q_t(\theta) \ \mathrm{d}\theta$

 q^n must be predictable w.r.t. $\widetilde{\mathbb{F}}=(\widetilde{\mathcal{F}}_t)_{t=0}^n$, where $\widetilde{\mathcal{F}}_t=\sigma(X_1,\ldots,X_n,Y_1,\ldots,Y_t)$.

Transductive Sequential Probability Assignment

Protocol: The environment reveals $X_1, \ldots, X_n \in \mathbb{R}^d$. For $t = 1, 2, \ldots, n$:

- 1. Learner picks $Q_t \in \Delta_{\Theta}$ with density q_t
- 2. Environment reveals $Y_t \in \mathbb{R}$ to the learner,
- 3. Learner incurs the log loss $\mathcal{L}_t(q_t) = -\log \int \exp(-\ell_t(\theta)) q_t(\theta) d\theta$

$$q^n$$
 must be predictable w.r.t. $\widetilde{\mathbb{F}}=(\widetilde{\mathcal{F}}_t)_{t=0}^n$, where $\widetilde{\mathcal{F}}_t=\sigma(X_1,\ldots,X_n,Y_1,\ldots,Y_t)$.

Regret: The regret of $q^n=(q_1,\ldots,q_n)$ w.r.t. a comparator $\bar{\theta}\in\Theta$ is

$$\operatorname{regret}_{q^n}(\bar{\theta}) = \sum_{t=1}^n \left(\mathcal{L}_t(q_t) - \ell_t(\bar{\theta}) \right).$$

Online-To-Confidence Set Conversion (Oblivious Design)

For any comparator $\bar{\theta}_n$ and any $\widetilde{\mathbb{F}}$ -predictable q^n , the set Θ_n is a δ -CS, where

$$\Theta_n = \left\{ \theta \in \mathbb{R}^d : \sum_{t=1}^n \left(\ell_t(\theta) - \ell_t(\bar{\theta}_n) \right) \le \operatorname{regret}_{q^n}(\bar{\theta}_n) + \log \frac{1}{\delta} \right\}.$$

Online-To-Confidence Set Conversion (Oblivious Design)

For any comparator $\bar{\theta}_n$ and any $\widetilde{\mathbb{F}}$ -predictable q^n , the set Θ_n is a δ -CS, where

$$\Theta_n = \left\{ \theta \in \mathbb{R}^d : \sum_{t=1}^n \left(\ell_t(\theta) - \ell_t(\bar{\theta}_n) \right) \le \operatorname{regret}_{q^n}(\bar{\theta}_n) + \log \frac{1}{\delta} \right\}.$$

Proof. Basically the same as last time. First,

$$\sum_{t=1}^{n} \left(\ell_t(\theta^*) - \ell_t(\bar{\theta}_n) \right) = \operatorname{regret}_{q^n}(\bar{\theta}_n) + \sum_{t=1}^{n} \left(\ell_t(\theta^*) - \mathcal{L}_t(q_t) \right).$$

Online-To-Confidence Set Conversion (Oblivious Design)

For any comparator $\bar{\theta}_n$ and any $\widetilde{\mathbb{F}}$ -predictable q^n , the set Θ_n is a δ -CS, where

$$\Theta_n = \left\{ \theta \in \mathbb{R}^d : \sum_{t=1}^n \left(\ell_t(\theta) - \ell_t(\bar{\theta}_n) \right) \le \operatorname{regret}_{q^n}(\bar{\theta}_n) + \log \frac{1}{\delta} \right\}.$$

Proof. Basically the same as last time. First,

$$\sum_{t=1}^{n} \left(\ell_t(\theta^*) - \ell_t(\bar{\theta}_n) \right) = \operatorname{regret}_{q^n}(\bar{\theta}_n) + \sum_{t=1}^{n} \left(\ell_t(\theta^*) - \mathcal{L}_t(q_t) \right).$$

As long as the design is oblivious, the second term is the logarithm of a non-negative $\widetilde{\mathbb{F}}$ -martingale. Therefore,

$$\mathbb{P}\left(\sum_{t=1}^{n} \left(\ell_{t}(\theta^{*}) - \ell_{t}(\bar{\theta}_{n})\right) \geq \operatorname{regret}_{q^{n}}(\bar{\theta}_{n}) + \log \frac{1}{\delta}\right) \leq \delta.$$

For a convex differentiable function $f: \mathbb{R}^d \to \mathbb{R}$, the *Bregman divergence* is

$$\mathcal{B}_f(\theta, \theta') = f(\theta) - f(\theta') - \langle \theta - \theta', \nabla f(\theta') \rangle$$
.

For a convex differentiable function $f: \mathbb{R}^d \to \mathbb{R}$, the *Bregman divergence* is

$$\mathcal{B}_f(\theta, \theta') = f(\theta) - f(\theta') - \langle \theta - \theta', \nabla f(\theta') \rangle.$$

For a convex differentiable function $\rho: \mathbb{R}^d \to \mathbb{R}$, let $Z_n^{\rho}(\theta) = \sum_{t=1}^n \ell_t(\theta) + \rho(\theta)$ and $\widehat{\theta}_n = \operatorname{argmin}_{\theta \in \mathbb{R}^d} Z_n^{\rho}(\theta)$.

For a convex differentiable function $f:\mathbb{R}^d \to \mathbb{R}$, the *Bregman divergence* is

$$\mathcal{B}_f(\theta, \theta') = f(\theta) - f(\theta') - \langle \theta - \theta', \nabla f(\theta') \rangle.$$

For a convex differentiable function $\rho: \mathbb{R}^d \to \mathbb{R}$, let $Z_n^{\rho}(\theta) = \sum_{t=1}^n \ell_t(\theta) + \rho(\theta)$ and $\widehat{\theta}_n = \operatorname{argmin}_{\theta \in \mathbb{R}^d} Z_n^{\rho}(\theta)$.

The Bregman information gain is

$$\gamma_n^{\rho} = -\log\left(\frac{\int \exp(-\mathcal{B}_{Z_n^{\rho}}(\theta, \widehat{\theta}_n))d\theta}{\int \exp(-\rho(\theta))d\theta}\right).$$

For a convex differentiable function $f: \mathbb{R}^d \to \mathbb{R}$, the *Bregman divergence* is

$$\mathcal{B}_f(\theta, \theta') = f(\theta) - f(\theta') - \langle \theta - \theta', \nabla f(\theta') \rangle.$$

For a convex differentiable function $\rho: \mathbb{R}^d \to \mathbb{R}$, let $Z_n^{\rho}(\theta) = \sum_{t=1}^n \ell_t(\theta) + \rho(\theta)$ and $\widehat{\theta}_n = \operatorname{argmin}_{\theta \in \mathbb{R}^d} Z_n^{\rho}(\theta)$.

The Bregman information gain is

$$\gamma_n^{\rho} = -\log\left(\frac{\int \exp(-\mathcal{B}_{Z_n^{\rho}}(\theta, \widehat{\theta}_n))d\theta}{\int \exp(-\rho(\theta))d\theta}\right).$$

If ψ is M-smooth ($|\psi^{\prime\prime}(z)| \leq M$) and $\rho = \frac{1}{2\gamma^2} \|\theta\|_2^2$, then

$$\gamma_n^{\rho} \le \frac{1}{2} \log \det(M\gamma^2 \Lambda_n + \mathrm{Id}) \le \frac{d}{2} \log(1 + \frac{\gamma^2 M L^2 n}{d}),$$

where $\Lambda_n = \sum_{t=1}^n X_t X_t^{\top}$ and $L = \max_{t \in [n]} \|X_t\|_2$.

Exponentially Weighted Average Forecaster

The Exponentially Weighted Average (EWA) forecaster takes as input a prior

$$q_1(\theta) \propto \exp(-\rho(\theta))$$
.

Exponentially Weighted Average Forecaster

The Exponentially Weighted Average (EWA) forecaster takes as input a prior

$$q_1(\theta) \propto \exp(-\rho(\theta))$$
.

For subsequent rounds $t = 2, 3, \ldots$, the EWA forecaster plays

$$q_t(\theta) \propto q_1(\theta) \exp\left(\sum_{k=1}^{t-1} \ell_k(\theta)\right).$$

Exponentially Weighted Average Forecaster

The Exponentially Weighted Average (EWA) forecaster takes as input a prior

$$q_1(\theta) \propto \exp(-\rho(\theta))$$
.

For subsequent rounds $t = 2, 3, \ldots$, the EWA forecaster plays

$$q_t(\theta) \propto q_1(\theta) \exp\left(\sum_{k=1}^{t-1} \ell_k(\theta)\right).$$

Claim: For any choice of ρ ,

$$\operatorname{regret}_{q^n}(\bar{\theta}_n) \le \gamma_n^{\rho} + \rho(\bar{\theta}_n).$$

Suppose that ψ is M-smooth, and fix $\gamma>0$. Set $\rho=\frac{1}{2\gamma^2}\|\theta\|_2^2$ and let $\widehat{\theta}_n=\mathrm{argmin}_{\theta\in\mathbb{R}^d}\{\sum_{t=1}^n\ell_t(\theta)+\rho(\theta)\}$.

Suppose that ψ is M-smooth, and fix $\gamma>0$. Set $\rho=\frac{1}{2\gamma^2}\|\theta\|_2^2$ and let $\widehat{\theta}_n=\mathrm{argmin}_{\theta\in\mathbb{R}^d}\{\sum_{t=1}^n\ell_t(\theta)+\rho(\theta)\}$.

Then, for any $\delta \in (0,1]$, the sets Θ_1,Θ_2,\dots satisfy $\mathbb{P}(\exists n \geq 1: \theta^\star \notin \Theta_n) \leq \delta$, where

$$\Theta_n = \left\{ \theta : \sum_{t=1}^n \ell_t(\theta) - \sum_{t=1}^n \ell_t(\widehat{\theta}_n) \le \frac{1}{2} \log \det(\gamma^2 M \Lambda_n + \mathrm{Id}) + \frac{\|\widehat{\theta}_n\|_2^2}{2\gamma^2} + \log \frac{1}{\delta} \right\}$$

Suppose that ψ is M-smooth, and fix $\gamma>0$. Set $\rho=\frac{1}{2\gamma^2}\|\theta\|_2^2$ and let $\widehat{\theta}_n=\mathrm{argmin}_{\theta\in\mathbb{R}^d}\{\sum_{t=1}^n\ell_t(\theta)+\rho(\theta)\}$.

Then, for any $\delta \in (0,1]$, the sets Θ_1,Θ_2,\dots satisfy $\mathbb{P}(\exists n \geq 1: \theta^\star \notin \Theta_n) \leq \delta$, where

$$\Theta_n = \left\{ \theta : \sum_{t=1}^n \ell_t(\theta) - \sum_{t=1}^n \ell_t(\widehat{\theta}_n) \le \frac{1}{2} \log \det(\gamma^2 M \Lambda_n + \mathrm{Id}) + \frac{\|\widehat{\theta}_n\|_2^2}{2\gamma^2} + \log \frac{1}{\delta} \right\}$$

If it is known that $\|\theta^*\|_2 \leq B$, then we can also use

$$\Theta_n = \left\{ \theta : \mathcal{B}_{Z_n^{\rho}}(\theta, \widehat{\theta}_n) \le \frac{1}{2} \log \det(\gamma^2 M \Lambda_n + \mathrm{Id}) + \frac{B^2}{2\gamma^2} + \log \frac{1}{\delta} \right\}$$

Suppose that ψ is M-smooth, and fix $\gamma>0$. Set $\rho=\frac{1}{2\gamma^2}\|\theta\|_2^2$ and let $\widehat{\theta}_n=\mathrm{argmin}_{\theta\in\mathbb{R}^d}\{\sum_{t=1}^n\ell_t(\theta)+\rho(\theta)\}$.

Then, for any $\delta \in (0,1]$, the sets Θ_1,Θ_2,\dots satisfy $\mathbb{P}(\exists n \geq 1: \theta^\star \notin \Theta_n) \leq \delta$, where

$$\Theta_n = \left\{ \theta : \sum_{t=1}^n \ell_t(\theta) - \sum_{t=1}^n \ell_t(\widehat{\theta}_n) \le \frac{1}{2} \log \det(\gamma^2 M \Lambda_n + \mathrm{Id}) + \frac{\|\widehat{\theta}_n\|_2^2}{2\gamma^2} + \log \frac{1}{\delta} \right\}$$

If it is known that $\|\theta^*\|_2 \leq B$, then we can also use

$$\Theta_n = \left\{ \theta : \mathcal{B}_{Z_n^{\rho}}(\theta, \widehat{\theta}_n) \le \frac{1}{2} \log \det(\gamma^2 M \Lambda_n + \mathrm{Id}) + \frac{B^2}{2\gamma^2} + \log \frac{1}{\delta} \right\}$$

For general (smooth) GLMs, we match the best confidence sequence that we're aware of (except the radius of ours is dimension-free).

Suppose that ψ is M-smooth, and fix $\gamma>0$. Set $\rho=\frac{1}{2\gamma^2}\|\theta\|_2^2$ and let $\widehat{\theta}_n=\mathrm{argmin}_{\theta\in\mathbb{R}^d}\{\sum_{t=1}^n\ell_t(\theta)+\rho(\theta)\}$.

Then, for any $\delta \in (0,1]$, the sets Θ_1,Θ_2,\ldots satisfy $\mathbb{P}(\exists n \geq 1: \theta^\star \notin \Theta_n) \leq \delta$, where

$$\Theta_n = \left\{ \theta : \sum_{t=1}^n \ell_t(\theta) - \sum_{t=1}^n \ell_t(\widehat{\theta}_n) \le \frac{1}{2} \log \det(\gamma^2 M \Lambda_n + \mathrm{Id}) + \frac{\|\widehat{\theta}_n\|_2^2}{2\gamma^2} + \log \frac{1}{\delta} \right\}$$

If it is known that $\|\theta^*\|_2 \leq B$, then we can also use

$$\Theta_n = \left\{ \theta : \mathcal{B}_{Z_n^{\rho}}(\theta, \widehat{\theta}_n) \le \frac{1}{2} \log \det(\gamma^2 M \Lambda_n + \mathrm{Id}) + \frac{B^2}{2\gamma^2} + \log \frac{1}{\delta} \right\}$$

For general (smooth) GLMs, we match the best confidence sequence that we're aware of (except the radius of ours is dimension-free).

For linear models, the Bregman ball becomes the ellipsoid,

$$\Theta_n = \left\{ \theta : \|\theta - \widehat{\theta}_n\|_{\Lambda_n + \frac{1}{\gamma^2} \mathrm{Id}}^2 \le \log \det(\gamma^2 M \Lambda_n + \mathrm{Id}) + \frac{B^2}{\gamma^2} + 2 \log \frac{1}{\delta} \right\}$$

Suppose that ψ is M-smooth, and fix $\gamma > 0$. Set $\rho = \frac{1}{2\gamma^2} \|\theta\|_2^2$ and let $\widehat{\theta}_n = \operatorname{argmin}_{\theta \in \mathbb{R}^d} \{ \sum_{t=1}^n \ell_t(\theta) + \rho(\theta) \}$.

Then, for any $\delta \in (0,1]$, the sets Θ_1,Θ_2,\ldots satisfy $\mathbb{P}(\exists n \geq 1: \theta^\star \notin \Theta_n) \leq \delta$, where

$$\Theta_n = \left\{ \theta : \sum_{t=1}^n \ell_t(\theta) - \sum_{t=1}^n \ell_t(\widehat{\theta}_n) \le \frac{1}{2} \log \det(\gamma^2 M \Lambda_n + \mathrm{Id}) + \frac{\|\widehat{\theta}_n\|_2^2}{2\gamma^2} + \log \frac{1}{\delta} \right\}$$

If it is known that $\|\theta^*\|_2 \leq B$, then we can also use

$$\Theta_n = \left\{ \theta : \mathcal{B}_{Z_n^{\rho}}(\theta, \widehat{\theta}_n) \le \frac{1}{2} \log \det(\gamma^2 M \Lambda_n + \mathrm{Id}) + \frac{B^2}{2\gamma^2} + \log \frac{1}{\delta} \right\}$$

For general (smooth) GLMs, we match the best confidence sequence that we're aware of (except the radius of ours is dimension-free).

For linear models, the Bregman ball becomes the ellipsoid,

$$\Theta_n = \left\{ \theta : \|\theta - \widehat{\theta}_n\|_{\Lambda_n + \frac{1}{\gamma^2} \mathrm{Id}}^2 \le \log \det(\gamma^2 M \Lambda_n + \mathrm{Id}) + \frac{B^2}{\gamma^2} + 2 \log \frac{1}{\delta} \right\}$$

This matches the one you would get from self-normalised concentration (with slightly better constants).

Let $\mathcal{S}_{n,b} = \{\theta: \max_{t \in [n]} |\langle \theta, X_t \rangle| \leq b \}$, let $\widehat{\theta}_{n,b} = \operatorname{argmin}_{\theta \in \mathcal{S}_{n,b}} \sum_{t=1}^n \ell_t(\theta)$ and let $\Psi(\theta) = \sum_{t=1}^n \psi(\langle \theta, X_t \rangle)$. Suppose that θ^\star satisfies $\sup_{t \in [n]} |\langle \theta^\star, X_t \rangle| \leq b$ (w.p. 1) that ψ is M-smooth on $\mathbb R$ and m-strongly-convex on [-b,b]. Set $\rho(\theta) = \frac{1}{2\gamma^2} \|\theta - \theta^\star\|_{\Lambda_n}^2$.

Let $\mathcal{S}_{n,b} = \{\theta : \max_{t \in [n]} |\langle \theta, X_t \rangle| \leq b \}$, let $\widehat{\theta}_{n,b} = \operatorname{argmin}_{\theta \in \mathcal{S}_{n,b}} \sum_{t=1}^n \ell_t(\theta)$ and let $\Psi(\theta) = \sum_{t=1}^n \psi(\langle \theta, X_t \rangle)$. Suppose that θ^\star satisfies $\sup_{t \in [n]} |\langle \theta^\star, X_t \rangle| \leq b$ (w.p. 1) that ψ is M-smooth on $\mathbb R$ and m-strongly-convex on [-b,b]. Set $\rho(\theta) = \frac{1}{2\gamma^2} \|\theta - \theta^\star\|_{\Lambda_n}^2$.

For any $\delta \in (0,1]$, the OTCS with oblivious design tells us that

$$\mathbb{P}\left(\sum_{t=1}^{n} \ell_t(\theta^*) - \sum_{t=1}^{n} \ell_t(\widehat{\theta}_{n,b}) \le \frac{d}{2}\log(1 + M\gamma^2) + \frac{1}{2\gamma^2} \|\widehat{\theta}_{n,b} - \theta^*\|_{\Lambda_n}^2 + \log\frac{1}{\delta}\right).$$

Let $\mathcal{S}_{n,b} = \{\theta : \max_{t \in [n]} |\langle \theta, X_t \rangle| \leq b \}$, let $\widehat{\theta}_{n,b} = \operatorname{argmin}_{\theta \in \mathcal{S}_{n,b}} \sum_{t=1}^n \ell_t(\theta)$ and let $\Psi(\theta) = \sum_{t=1}^n \psi(\langle \theta, X_t \rangle)$. Suppose that θ^* satisfies $\sup_{t \in [n]} |\langle \theta^*, X_t \rangle| \leq b$ (w.p. 1) that ψ is M-smooth on $\mathbb R$ and m-strongly-convex on [-b,b]. Set $\rho(\theta) = \frac{1}{2\gamma^2} \|\theta - \theta^*\|_{\Lambda_n}^2$.

For any $\delta \in (0,1],$ the OTCS with oblivious design tells us that

$$\mathbb{P}\left(\sum_{t=1}^{n} \ell_t(\theta^*) - \sum_{t=1}^{n} \ell_t(\widehat{\theta}_{n,b}) \le \frac{d}{2}\log(1 + M\gamma^2) + \frac{1}{2\gamma^2} \|\widehat{\theta}_{n,b} - \theta^*\|_{\Lambda_n}^2 + \log\frac{1}{\delta}\right).$$

Using the first-order optimality condition satisfied by $\widehat{\theta}_{n,b}$ and strong convexity of ψ on [-b,b],

$$\mathcal{B}_{\Psi}(\theta^{\star},\widehat{\theta}_{n,b}) \leq \sum_{t=1}^{n} \ell_{t}(\theta) - \sum_{t=1}^{n} \ell_{t}(\widehat{\theta}_{n,b}), \quad \text{and} \quad \frac{1}{2\gamma^{2}} \|\widehat{\theta}_{n,b} - \theta^{\star}\|_{\Lambda_{n}}^{2} \leq \frac{1}{m\gamma^{2}} \mathcal{B}_{\Psi}(\theta^{\star},\widehat{\theta}_{n,b}).$$

Let $\mathcal{S}_{n,b} = \{\theta : \max_{t \in [n]} |\langle \theta, X_t \rangle| \leq b \}$, let $\widehat{\theta}_{n,b} = \operatorname{argmin}_{\theta \in \mathcal{S}_{n,b}} \sum_{t=1}^n \ell_t(\theta)$ and let $\Psi(\theta) = \sum_{t=1}^n \psi(\langle \theta, X_t \rangle)$. Suppose that θ^* satisfies $\sup_{t \in [n]} |\langle \theta^*, X_t \rangle| \leq b$ (w.p. 1) that ψ is M-smooth on $\mathbb R$ and m-strongly-convex on [-b,b]. Set $\rho(\theta) = \frac{1}{2\gamma^2} \|\theta - \theta^*\|_{\Lambda_n}^2$.

For any $\delta \in (0,1],$ the OTCS with oblivious design tells us that

$$\mathbb{P}\left(\sum_{t=1}^{n} \ell_t(\theta^*) - \sum_{t=1}^{n} \ell_t(\widehat{\theta}_{n,b}) \le \frac{d}{2}\log(1 + M\gamma^2) + \frac{1}{2\gamma^2} \|\widehat{\theta}_{n,b} - \theta^*\|_{\Lambda_n}^2 + \log\frac{1}{\delta}\right).$$

Using the first-order optimality condition satisfied by $\widehat{\theta}_{n,b}$ and strong convexity of ψ on [-b,b],

$$\textstyle \mathcal{B}_{\Psi}(\theta^{\star},\widehat{\theta}_{n,b}) \leq \sum_{t=1}^{n} \ell_{t}(\theta) - \sum_{t=1}^{n} \ell_{t}(\widehat{\theta}_{n,b})\,, \quad \text{and} \quad \frac{1}{2\gamma^{2}} \|\widehat{\theta}_{n,b} - \theta^{\star}\|_{\Lambda_{n}}^{2} \leq \frac{1}{m\gamma^{2}} \mathcal{B}_{\Psi}(\theta^{\star},\widehat{\theta}_{n,b})\,.$$

Therefore (with $\gamma^2=2/m$), the set Θ_n satisfies $\mathbb{P}(\theta^*\notin\Theta_n)\leq\delta$, where

$$\Theta_n = \left\{ \theta : \mathcal{B}_{\Psi}(\theta, \widehat{\theta}_{b,n}) \le d \log(1 + 2M/m) + 2 \log \frac{1}{\delta} \right\}.$$

Let $\mathcal{S}_{n,b} = \{\theta : \max_{t \in [n]} |\langle \theta, X_t \rangle| \leq b \}$, let $\widehat{\theta}_{n,b} = \operatorname{argmin}_{\theta \in \mathcal{S}_{n,b}} \sum_{t=1}^n \ell_t(\theta)$ and let $\Psi(\theta) = \sum_{t=1}^n \psi(\langle \theta, X_t \rangle)$. Suppose that θ^* satisfies $\sup_{t \in [n]} |\langle \theta^*, X_t \rangle| \leq b$ (w.p. 1) that ψ is M-smooth on $\mathbb R$ and m-strongly-convex on [-b,b]. Set $\rho(\theta) = \frac{1}{2\gamma^2} \|\theta - \theta^*\|_{\Lambda_n}^2$.

For any $\delta \in (0,1]$, the OTCS with oblivious design tells us that

$$\mathbb{P}\left(\sum_{t=1}^{n} \ell_t(\theta^*) - \sum_{t=1}^{n} \ell_t(\widehat{\theta}_{n,b}) \le \frac{d}{2}\log(1 + M\gamma^2) + \frac{1}{2\gamma^2} \|\widehat{\theta}_{n,b} - \theta^*\|_{\Lambda_n}^2 + \log\frac{1}{\delta}\right).$$

Using the first-order optimality condition satisfied by $\widehat{\theta}_{n,b}$ and strong convexity of ψ on [-b,b],

$$\textstyle \mathcal{B}_{\Psi}(\theta^{\star},\widehat{\theta}_{n,b}) \leq \sum_{t=1}^{n} \ell_{t}(\theta) - \sum_{t=1}^{n} \ell_{t}(\widehat{\theta}_{n,b})\,, \quad \text{and} \quad \frac{1}{2\gamma^{2}} \|\widehat{\theta}_{n,b} - \theta^{\star}\|_{\Lambda_{n}}^{2} \leq \frac{1}{m\gamma^{2}} \mathcal{B}_{\Psi}(\theta^{\star},\widehat{\theta}_{n,b})\,.$$

Therefore (with $\gamma^2=2/m$), the set Θ_n satisfies $\mathbb{P}(\theta^\star\notin\Theta_n)\leq\delta$, where

$$\Theta_n = \left\{ \theta : \mathcal{B}_{\Psi}(\theta, \widehat{\theta}_{b,n}) \le d \log(1 + 2M/m) + 2 \log \frac{1}{\delta} \right\}.$$

For linear models, we get the ellipsoid

$$\Theta_n = \left\{ \theta : \|\theta - \widehat{\theta}_{b,n}\|_{\Lambda_n}^2 \le 2d \log(3) + 4 \log \frac{1}{\delta} \right\}.$$

• Regret bounds can be converted into confidence sets/sequences for GLMs

- Regret bounds can be converted into confidence sets/sequences for GLMs
- Also in the paper: confidence sets with different shapes, confidence sets for sparse GLMs

- Regret bounds can be converted into confidence sets/sequences for GLMs
- Also in the paper: confidence sets with different shapes, confidence sets for sparse GLMs
- · How to do this with the Normalised Maximum Likelihood forecaster instead of EWA?

- Regret bounds can be converted into confidence sets/sequences for GLMs
- Also in the paper: confidence sets with different shapes, confidence sets for sparse GLMs
- How to do this with the Normalised Maximum Likelihood forecaster instead of EWA?
- For which q^n (if any) is $\exp\left(\sum_{t=1}^n\left(\ell_t(\theta^\star)-\mathcal{L}_t(q_t)\right)\right)$ an optimal e-variable/process?

- Regret bounds can be converted into confidence sets/sequences for GLMs
- Also in the paper: confidence sets with different shapes, confidence sets for sparse GLMs
- How to do this with the Normalised Maximum Likelihood forecaster instead of EWA?
- For which q^n (if any) is $\exp\left(\sum_{t=1}^n\left(\ell_t(\theta^\star)-\mathcal{L}_t(q_t)\right)\right)$ an optimal e-variable/process?

The end. Thank you!