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We want to construct confidence sequences for GLMs without doing any actual work.
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Generalised Linear Model:
- Covariates X1,..., X, € R?
* Responses Yi,...,Y, €R
+ Likelihood p(Y:|X:,0") = exp ((8*, z)y — ¥((6", x))) h(y)

The log-partition function ¢ : R — R is convex.
Log-Likelihood Loss: Define ¢:(0) = —log(p(Y:| Xt, 0)).
Adaptive Design: X; depends on X;,Y1,..., X 1,Y;_1.

Oblivious Design: X; does notdepend on Y3,...,Y:_1.
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In this talk, we will (mostly) focus on sets of the form

@n—{ezzn:zt(e)— inf zn:zt(e')gﬁn}
t=1

0'eR? i1
Online-to-confidence-set conversion: Use the output and/or regret bound of an online learning algorithm to

determine f,,.

Claim: We can recover all confidence sequences for GLMs via OTCS (at least all confidence sequences with
non-asymptotic coverage guarantees).
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Sequential Probability Assignment

Protocol: Fort =1,2,...,n
1. Environment reveals X; to the learner
2. Learner picks Q: € Ag with density ¢;
3. Environment reveals Y; to the learner,
4. Learner incurs the log loss L;(q:) = —log [ exp(—£¢(6))q: () df
q" = (q1,...,qn) must be predictable w.rt. F = (F:)}_,, where 7t = o(X1,Y1,..., X+, Y2, X¢41).

Regret: The regret of ¢™ w.r.t. a comparator § € © is

regret  n Z Et (qt) — 0t 0))
t=1

The minimax regret inf¢n supg regret n () for linear models (and some GLMs) is of the order dlog(n).

Note: This can be made more general by playing distributions on ) (see our paper).
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Next, we notice that the second term is the logarithm of a non-negative F-martingale.
n
* p(}/t |Xt7 9)
L:(0%) — L ) dé.
o (5 - e ) < I [ S5 e

Therefore,

n
< Z (€e(6%) — £4(6n)) > regretyn (8n) + log (1§> <3J.
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Protocol: The environment reveals X;,..., X, ¢ R%. Fort =1,2,...,n:

1. Learner picks Q: € Ag with density ¢,
2. Environment reveals Y; € R to the learner,

3. Learner incurs the log loss £:(g:) = — log [ exp(—£:(6))q:(6) do

¢" must be predictable w.rt. F = (F,)/_o, where F; = (X1, ..., Xn, Yi,...,Y)).
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As long as the design is oblivious, the second term is the logarithm of a non-negative F-martingale. Therefore,
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For a convex differentiable function f : R¢ — R, the Bregman divergence is

By (0,0') = f(0) — f(0') — (0 — 0",V f(0)).

For a convex differentiable function p : R% — R, let Z5(0) = S 7, £:(6) + p(0) and 6,, = argmingcpa 24 (0).

The Bregman information gain is

— J exp(=Byp (0,0,))d0
T T TR Texp(—p(0))d0 )

If is M-smooth (j4"(2)] < M) and p = 525 |6||3, then

Ny

1 2 2
i < 5 logdet(M~*Ap +1d) < log(1 + TG,

where A, =377 XX, and L = maxe[, [| X¢|l2-
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The Exponentially Weighted Average (EWA) forecaster takes as input a prior
q1(0) o exp(—p(0)) -

For subsequent rounds ¢t = 2,3, ..., the EWA forecaster plays

t—1
q¢(0) o< q1(0) exp <Z Zk(9)> .

k=1

Claim: For any choice of p,
regretn (O0n) < vf) + p(0n) -
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For linear models, the Bregman ball becomes the ellipsoid,

~ 2
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This matches the one you would get from self-normalised concentration (with slightly better constants). 1
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Therefore (with 42 = 2/m), the set ©,, satisfies P(9* ¢ ©,,) < §, where

On = {9 : By (0,0,,) < dlog(1 + 2M/m) + 2log %} .

For linear models, we get the ellipsoid
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Conclusion

« Regret bounds can be converted into confidence sets/sequences for GLMs
« Also in the paper: confidence sets with different shapes, confidence sets for sparse GLMs
+ How to do this with the Normalised Maximum Likelihood forecaster instead of EWA?

« For which ¢" (if any) is exp (37, (¢:(6*) — Li(q:))) an optimal e-variable/process?

The end. Thank you!
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