
Confidence Sequences for Generalised Linear Models via Regret Analysis

Hamish Flynn

July 3, 2025

Warmest Thanks

Eugenio Clerico Wojciech Kotłowski Gergely Neu

1

This Work

Assume we know a bit about online learning (or universal coding).

We want to construct confidence sequences for GLMs without doing any actual work.

2

This Work

Assume we know a bit about online learning (or universal coding).

We want to construct confidence sequences for GLMs without doing any actual work.

2

Generalised Linear Models

Generalised Linear Model:

• Covariates X1, . . . , Xn ∈ Rd

• Responses Y1, . . . , Yn ∈ R

• Likelihood p(Yt|Xt, θ
⋆) = exp

(
⟨θ⋆, x⟩y − ψ(⟨θ⋆, x⟩)

)
h(y)

The log-partition function ψ : R → R is convex.

Log-Likelihood Loss: Define ℓt(θ) = − log(p(Yt|Xt, θ)).

Adaptive Design: Xt depends on X1, Y1, . . . , Xt−1, Yt−1.

Oblivious Design: Xt does not depend on Y1, . . . , Yt−1.

3

Generalised Linear Models

Generalised Linear Model:

• Covariates X1, . . . , Xn ∈ Rd

• Responses Y1, . . . , Yn ∈ R

• Likelihood p(Yt|Xt, θ
⋆) = exp

(
⟨θ⋆, x⟩y − ψ(⟨θ⋆, x⟩)

)
h(y)

The log-partition function ψ : R → R is convex.

Log-Likelihood Loss: Define ℓt(θ) = − log(p(Yt|Xt, θ)).

Adaptive Design: Xt depends on X1, Y1, . . . , Xt−1, Yt−1.

Oblivious Design: Xt does not depend on Y1, . . . , Yt−1.

3

Generalised Linear Models

Generalised Linear Model:

• Covariates X1, . . . , Xn ∈ Rd

• Responses Y1, . . . , Yn ∈ R

• Likelihood p(Yt|Xt, θ
⋆) = exp

(
⟨θ⋆, x⟩y − ψ(⟨θ⋆, x⟩)

)
h(y)

The log-partition function ψ : R → R is convex.

Log-Likelihood Loss: Define ℓt(θ) = − log(p(Yt|Xt, θ)).

Adaptive Design: Xt depends on X1, Y1, . . . , Xt−1, Yt−1.

Oblivious Design: Xt does not depend on Y1, . . . , Yt−1.

3

Generalised Linear Models

Generalised Linear Model:

• Covariates X1, . . . , Xn ∈ Rd

• Responses Y1, . . . , Yn ∈ R

• Likelihood p(Yt|Xt, θ
⋆) = exp

(
⟨θ⋆, x⟩y − ψ(⟨θ⋆, x⟩)

)
h(y)

The log-partition function ψ : R → R is convex.

Log-Likelihood Loss: Define ℓt(θ) = − log(p(Yt|Xt, θ)).

Adaptive Design: Xt depends on X1, Y1, . . . , Xt−1, Yt−1.

Oblivious Design: Xt does not depend on Y1, . . . , Yt−1.

3

Objective and Claim

Adaptive Design: For δ ∈ (0, 1], a δ-confidence sequence for θ⋆ is a sequence of sets Θ1,Θ2, . . . , such that

P(∃n ≥ 1 : θ⋆ /∈ Θn) ≤ δ .

Oblivious Design: A δ-confidence set for θ⋆ is a set Θn, such that

P(θ⋆ /∈ Θn) ≤ δ .

In this talk, we will (mostly) focus on sets of the form

Θn =

{
θ :

n∑
t=1

ℓt(θ)− inf
θ′∈Rd

n∑
t=1

ℓt(θ
′) ≤ βn

}

Online-to-confidence-set conversion: Use the output and/or regret bound of an online learning algorithm to
determine βn.

Claim: We can recover all confidence sequences for GLMs via OTCS (at least all confidence sequences with
non-asymptotic coverage guarantees).

4

Objective and Claim

Adaptive Design: For δ ∈ (0, 1], a δ-confidence sequence for θ⋆ is a sequence of sets Θ1,Θ2, . . . , such that

P(∃n ≥ 1 : θ⋆ /∈ Θn) ≤ δ .

Oblivious Design: A δ-confidence set for θ⋆ is a set Θn, such that

P(θ⋆ /∈ Θn) ≤ δ .

In this talk, we will (mostly) focus on sets of the form

Θn =

{
θ :

n∑
t=1

ℓt(θ)− inf
θ′∈Rd

n∑
t=1

ℓt(θ
′) ≤ βn

}

Online-to-confidence-set conversion: Use the output and/or regret bound of an online learning algorithm to
determine βn.

Claim: We can recover all confidence sequences for GLMs via OTCS (at least all confidence sequences with
non-asymptotic coverage guarantees).

4

Objective and Claim

Adaptive Design: For δ ∈ (0, 1], a δ-confidence sequence for θ⋆ is a sequence of sets Θ1,Θ2, . . . , such that

P(∃n ≥ 1 : θ⋆ /∈ Θn) ≤ δ .

Oblivious Design: A δ-confidence set for θ⋆ is a set Θn, such that

P(θ⋆ /∈ Θn) ≤ δ .

In this talk, we will (mostly) focus on sets of the form

Θn =

{
θ :

n∑
t=1

ℓt(θ)− inf
θ′∈Rd

n∑
t=1

ℓt(θ
′) ≤ βn

}

Online-to-confidence-set conversion: Use the output and/or regret bound of an online learning algorithm to
determine βn.

Claim: We can recover all confidence sequences for GLMs via OTCS (at least all confidence sequences with
non-asymptotic coverage guarantees).

4

Objective and Claim

Adaptive Design: For δ ∈ (0, 1], a δ-confidence sequence for θ⋆ is a sequence of sets Θ1,Θ2, . . . , such that

P(∃n ≥ 1 : θ⋆ /∈ Θn) ≤ δ .

Oblivious Design: A δ-confidence set for θ⋆ is a set Θn, such that

P(θ⋆ /∈ Θn) ≤ δ .

In this talk, we will (mostly) focus on sets of the form

Θn =

{
θ :

n∑
t=1

ℓt(θ)− inf
θ′∈Rd

n∑
t=1

ℓt(θ
′) ≤ βn

}

Online-to-confidence-set conversion: Use the output and/or regret bound of an online learning algorithm to
determine βn.

Claim: We can recover all confidence sequences for GLMs via OTCS (at least all confidence sequences with
non-asymptotic coverage guarantees).

4

Objective and Claim

Adaptive Design: For δ ∈ (0, 1], a δ-confidence sequence for θ⋆ is a sequence of sets Θ1,Θ2, . . . , such that

P(∃n ≥ 1 : θ⋆ /∈ Θn) ≤ δ .

Oblivious Design: A δ-confidence set for θ⋆ is a set Θn, such that

P(θ⋆ /∈ Θn) ≤ δ .

In this talk, we will (mostly) focus on sets of the form

Θn =

{
θ :

n∑
t=1

ℓt(θ)− inf
θ′∈Rd

n∑
t=1

ℓt(θ
′) ≤ βn

}

Online-to-confidence-set conversion: Use the output and/or regret bound of an online learning algorithm to
determine βn.

Claim: We can recover all confidence sequences for GLMs via OTCS (at least all confidence sequences with
non-asymptotic coverage guarantees).

4

Online-To-Confidence-Set Conversion

(for adaptive design)

Sequential Probability Assignment

Protocol: For t = 1, 2, . . . , n:

1. Environment reveals Xt to the learner

2. Learner picks Qt ∈ ∆Θ with density qt

3. Environment reveals Yt to the learner,

4. Learner incurs the log loss Lt(qt) = − log
∫
exp(−ℓt(θ))qt(θ) dθ

qn = (q1, . . . , qn) must be predictable w.r.t. F = (Ft)nt=0, where Ft = σ(X1, Y1, . . . , Xt, Yt, Xt+1).

Regret: The regret of qn w.r.t. a comparator θ̄ ∈ Θ is

regretqn (θ̄) =

n∑
t=1

(
Lt(qt)− ℓt(θ̄)

)
.

The minimax regret infqn supθ̄ regretqn (θ̄) for linear models (and some GLMs) is of the order d log(n).

Note: This can be made more general by playing distributions on Y (see our paper).

5

Sequential Probability Assignment

Protocol: For t = 1, 2, . . . , n:

1. Environment reveals Xt to the learner

2. Learner picks Qt ∈ ∆Θ with density qt

3. Environment reveals Yt to the learner,

4. Learner incurs the log loss Lt(qt) = − log
∫
exp(−ℓt(θ))qt(θ) dθ

qn = (q1, . . . , qn) must be predictable w.r.t. F = (Ft)nt=0, where Ft = σ(X1, Y1, . . . , Xt, Yt, Xt+1).

Regret: The regret of qn w.r.t. a comparator θ̄ ∈ Θ is

regretqn (θ̄) =

n∑
t=1

(
Lt(qt)− ℓt(θ̄)

)
.

The minimax regret infqn supθ̄ regretqn (θ̄) for linear models (and some GLMs) is of the order d log(n).

Note: This can be made more general by playing distributions on Y (see our paper).

5

Sequential Probability Assignment

Protocol: For t = 1, 2, . . . , n:

1. Environment reveals Xt to the learner

2. Learner picks Qt ∈ ∆Θ with density qt

3. Environment reveals Yt to the learner,

4. Learner incurs the log loss Lt(qt) = − log
∫
exp(−ℓt(θ))qt(θ) dθ

qn = (q1, . . . , qn) must be predictable w.r.t. F = (Ft)nt=0, where Ft = σ(X1, Y1, . . . , Xt, Yt, Xt+1).

Regret: The regret of qn w.r.t. a comparator θ̄ ∈ Θ is

regretqn (θ̄) =
n∑

t=1

(
Lt(qt)− ℓt(θ̄)

)
.

The minimax regret infqn supθ̄ regretqn (θ̄) for linear models (and some GLMs) is of the order d log(n).

Note: This can be made more general by playing distributions on Y (see our paper).

5

Sequential Probability Assignment

Protocol: For t = 1, 2, . . . , n:

1. Environment reveals Xt to the learner

2. Learner picks Qt ∈ ∆Θ with density qt

3. Environment reveals Yt to the learner,

4. Learner incurs the log loss Lt(qt) = − log
∫
exp(−ℓt(θ))qt(θ) dθ

qn = (q1, . . . , qn) must be predictable w.r.t. F = (Ft)nt=0, where Ft = σ(X1, Y1, . . . , Xt, Yt, Xt+1).

Regret: The regret of qn w.r.t. a comparator θ̄ ∈ Θ is

regretqn (θ̄) =
n∑

t=1

(
Lt(qt)− ℓt(θ̄)

)
.

The minimax regret infqn supθ̄ regretqn (θ̄) for linear models (and some GLMs) is of the order d log(n).

Note: This can be made more general by playing distributions on Y (see our paper).

5

Sequential Probability Assignment

Protocol: For t = 1, 2, . . . , n:

1. Environment reveals Xt to the learner

2. Learner picks Qt ∈ ∆Θ with density qt

3. Environment reveals Yt to the learner,

4. Learner incurs the log loss Lt(qt) = − log
∫
exp(−ℓt(θ))qt(θ) dθ

qn = (q1, . . . , qn) must be predictable w.r.t. F = (Ft)nt=0, where Ft = σ(X1, Y1, . . . , Xt, Yt, Xt+1).

Regret: The regret of qn w.r.t. a comparator θ̄ ∈ Θ is

regretqn (θ̄) =
n∑

t=1

(
Lt(qt)− ℓt(θ̄)

)
.

The minimax regret infqn supθ̄ regretqn (θ̄) for linear models (and some GLMs) is of the order d log(n).

Note: This can be made more general by playing distributions on Y (see our paper).

5

Online-To-Confidence Set Conversion (Adaptive Design)

For any sequence of comparators θ̄1, θ̄2, . . . and any F-predictable qn, the sets Θ1,Θ2, . . . form a δ-CS, where

Θn =

{
θ ∈ Rd :

n∑
t=1

(
ℓt(θ)− ℓt(θ̄n)

)
≤ regretqn (θ̄n) + log 1

δ

}
.

Proof. First,

Next, we notice that the second term is the logarithm of a non-negative F-martingale.

exp

(
n∑

t=1

(
ℓt(θ

⋆)− Lt(qt)
))

=
n∏

t=1

∫
p(Yt|Xt, θ)

p(Yt|Xt, θ⋆)
qt(θ) dθ .

Therefore,

P

(
∃n ≥ 1,

n∑
t=1

(
ℓt(θ

⋆)− ℓt(θ̄n)
)
≥ regretqn (θ̄n) + log 1

δ

)
≤ δ .

6

Online-To-Confidence Set Conversion (Adaptive Design)

For any sequence of comparators θ̄1, θ̄2, . . . and any F-predictable qn, the sets Θ1,Θ2, . . . form a δ-CS, where

Θn =

{
θ ∈ Rd :

n∑
t=1

(
ℓt(θ)− ℓt(θ̄n)

)
≤ regretqn (θ̄n) + log 1

δ

}
.

Proof. First,
n∑

t=1

(
ℓt(θ

⋆)− ℓt(θ̄n)
)
=

n∑
t=1

(
Lt(qt)− ℓt(θ̄n)

)
+

n∑
t=1

(
ℓt(θ

⋆)− Lt(qt)
)
.

Next, we notice that the second term is the logarithm of a non-negative F-martingale.

exp

(
n∑

t=1

(
ℓt(θ

⋆)− Lt(qt)
))

=
n∏

t=1

∫
p(Yt|Xt, θ)

p(Yt|Xt, θ⋆)
qt(θ) dθ .

Therefore,

P

(
∃n ≥ 1,

n∑
t=1

(
ℓt(θ

⋆)− ℓt(θ̄n)
)
≥ regretqn (θ̄n) + log 1

δ

)
≤ δ .

6

Online-To-Confidence Set Conversion (Adaptive Design)

For any sequence of comparators θ̄1, θ̄2, . . . and any F-predictable qn, the sets Θ1,Θ2, . . . form a δ-CS, where

Θn =

{
θ ∈ Rd :

n∑
t=1

(
ℓt(θ)− ℓt(θ̄n)

)
≤ regretqn (θ̄n) + log 1

δ

}
.

Proof. First,
n∑

t=1

(
ℓt(θ

⋆)− ℓt(θ̄n)
)
=

n∑
t=1

(
Lt(qt)− ℓt(θ̄n)

)
︸ ︷︷ ︸

regretqn (θ̄n)

+
n∑

t=1

(
ℓt(θ

⋆)− Lt(qt)
)
.

Next, we notice that the second term is the logarithm of a non-negative F-martingale.

exp

(
n∑

t=1

(
ℓt(θ

⋆)− Lt(qt)
))

=

n∏
t=1

∫
p(Yt|Xt, θ)

p(Yt|Xt, θ⋆)
qt(θ) dθ .

Therefore,

P

(
∃n ≥ 1,

n∑
t=1

(
ℓt(θ

⋆)− ℓt(θ̄n)
)
≥ regretqn (θ̄n) + log 1

δ

)
≤ δ .

6

Online-To-Confidence Set Conversion (Adaptive Design)

For any sequence of comparators θ̄1, θ̄2, . . . and any F-predictable qn, the sets Θ1,Θ2, . . . form a δ-CS, where

Θn =

{
θ ∈ Rd :

n∑
t=1

(
ℓt(θ)− ℓt(θ̄n)

)
≤ regretqn (θ̄n) + log 1

δ

}
.

Proof. First,
n∑

t=1

(
ℓt(θ

⋆)− ℓt(θ̄n)
)
=

n∑
t=1

(
Lt(qt)− ℓt(θ̄n)

)
︸ ︷︷ ︸

regretqn (θ̄n)

+
n∑

t=1

(
ℓt(θ

⋆)− Lt(qt)
)
.

Next, we notice that the second term is the logarithm of a non-negative F-martingale.

exp

(
n∑

t=1

(
ℓt(θ

⋆)− Lt(qt)
))

=
n∏

t=1

∫
p(Yt|Xt, θ)

p(Yt|Xt, θ⋆)
qt(θ) dθ .

Therefore,

P

(
∃n ≥ 1,

n∑
t=1

(
ℓt(θ

⋆)− ℓt(θ̄n)
)
≥ regretqn (θ̄n) + log 1

δ

)
≤ δ .

6

Online-To-Confidence Set Conversion (Adaptive Design)

For any sequence of comparators θ̄1, θ̄2, . . . and any F-predictable qn, the sets Θ1,Θ2, . . . form a δ-CS, where

Θn =

{
θ ∈ Rd :

n∑
t=1

(
ℓt(θ)− ℓt(θ̄n)

)
≤ regretqn (θ̄n) + log 1

δ

}
.

Proof. First,
n∑

t=1

(
ℓt(θ

⋆)− ℓt(θ̄n)
)
=

n∑
t=1

(
Lt(qt)− ℓt(θ̄n)

)
︸ ︷︷ ︸

regretqn (θ̄n)

+
n∑

t=1

(
ℓt(θ

⋆)− Lt(qt)
)
.

Next, we notice that the second term is the logarithm of a non-negative F-martingale.

exp

(
n∑

t=1

(
ℓt(θ

⋆)− Lt(qt)
))

=
n∏

t=1

∫
p(Yt|Xt, θ)

p(Yt|Xt, θ⋆)
qt(θ) dθ .

Therefore,

P

(
∃n ≥ 1,

n∑
t=1

(
ℓt(θ

⋆)− ℓt(θ̄n)
)
≥ regretqn (θ̄n) + log 1

δ

)
≤ δ .

6

Online-To-Confidence-Set Conversion

(for oblivious design)

Transductive Sequential Probability Assignment

Protocol: The environment reveals X1, . . . , Xn ∈ Rd. For t = 1, 2, . . . , n:

1. Learner picks Qt ∈ ∆Θ with density qt

2. Environment reveals Yt ∈ R to the learner,

3. Learner incurs the log loss Lt(qt) = − log
∫
exp(−ℓt(θ))qt(θ) dθ

qn must be predictable w.r.t. F̃ = (F̃t)
n
t=0, where F̃t = σ(X1, . . . , Xn, Y1, . . . , Yt).

Regret: The regret of qn = (q1, . . . , qn) w.r.t. a comparator θ̄ ∈ Θ is

regretqn(θ̄) =

n∑
t=1

(
Lt(qt)− ℓt(θ̄)

)
.

7

Transductive Sequential Probability Assignment

Protocol: The environment reveals X1, . . . , Xn ∈ Rd. For t = 1, 2, . . . , n:

1. Learner picks Qt ∈ ∆Θ with density qt

2. Environment reveals Yt ∈ R to the learner,

3. Learner incurs the log loss Lt(qt) = − log
∫
exp(−ℓt(θ))qt(θ) dθ

qn must be predictable w.r.t. F̃ = (F̃t)
n
t=0, where F̃t = σ(X1, . . . , Xn, Y1, . . . , Yt).

Regret: The regret of qn = (q1, . . . , qn) w.r.t. a comparator θ̄ ∈ Θ is

regretqn(θ̄) =

n∑
t=1

(
Lt(qt)− ℓt(θ̄)

)
.

7

Transductive Sequential Probability Assignment

Protocol: The environment reveals X1, . . . , Xn ∈ Rd. For t = 1, 2, . . . , n:

1. Learner picks Qt ∈ ∆Θ with density qt

2. Environment reveals Yt ∈ R to the learner,

3. Learner incurs the log loss Lt(qt) = − log
∫
exp(−ℓt(θ))qt(θ) dθ

qn must be predictable w.r.t. F̃ = (F̃t)
n
t=0, where F̃t = σ(X1, . . . , Xn, Y1, . . . , Yt).

Regret: The regret of qn = (q1, . . . , qn) w.r.t. a comparator θ̄ ∈ Θ is

regretqn(θ̄) =
n∑

t=1

(
Lt(qt)− ℓt(θ̄)

)
.

7

Online-To-Confidence Set Conversion (Oblivious Design)

For any comparator θ̄n and any F̃-predictable qn, the set Θn is a δ-CS, where

Θn =

{
θ ∈ Rd :

n∑
t=1

(
ℓt(θ)− ℓt(θ̄n)

)
≤ regretqn (θ̄n) + log 1

δ

}
.

Proof. Basically the same as last time. First,

n∑
t=1

(
ℓt(θ

⋆)− ℓt(θ̄n)
)
= regretqn (θ̄n) +

n∑
t=1

(
ℓt(θ

⋆)− Lt(qt)
)
.

As long as the design is oblivious, the second term is the logarithm of a non-negative F̃-martingale. Therefore,

P

(
n∑

t=1

(
ℓt(θ

⋆)− ℓt(θ̄n)
)
≥ regretqn (θ̄n) + log 1

δ

)
≤ δ .

8

Online-To-Confidence Set Conversion (Oblivious Design)

For any comparator θ̄n and any F̃-predictable qn, the set Θn is a δ-CS, where

Θn =

{
θ ∈ Rd :

n∑
t=1

(
ℓt(θ)− ℓt(θ̄n)

)
≤ regretqn (θ̄n) + log 1

δ

}
.

Proof. Basically the same as last time. First,

n∑
t=1

(
ℓt(θ

⋆)− ℓt(θ̄n)
)
= regretqn (θ̄n) +

n∑
t=1

(
ℓt(θ

⋆)− Lt(qt)
)
.

As long as the design is oblivious, the second term is the logarithm of a non-negative F̃-martingale. Therefore,

P

(
n∑

t=1

(
ℓt(θ

⋆)− ℓt(θ̄n)
)
≥ regretqn (θ̄n) + log 1

δ

)
≤ δ .

8

Online-To-Confidence Set Conversion (Oblivious Design)

For any comparator θ̄n and any F̃-predictable qn, the set Θn is a δ-CS, where

Θn =

{
θ ∈ Rd :

n∑
t=1

(
ℓt(θ)− ℓt(θ̄n)

)
≤ regretqn (θ̄n) + log 1

δ

}
.

Proof. Basically the same as last time. First,

n∑
t=1

(
ℓt(θ

⋆)− ℓt(θ̄n)
)
= regretqn (θ̄n) +

n∑
t=1

(
ℓt(θ

⋆)− Lt(qt)
)
.

As long as the design is oblivious, the second term is the logarithm of a non-negative F̃-martingale. Therefore,

P

(
n∑

t=1

(
ℓt(θ

⋆)− ℓt(θ̄n)
)
≥ regretqn (θ̄n) + log 1

δ

)
≤ δ .

8

Online-To-Confidence-Set Conversions for Smooth GLMs

Bregman Divergence and Bregman Information Gain

For a convex differentiable function f : Rd → R, the Bregman divergence is

Bf (θ, θ
′) = f(θ)− f(θ′)− ⟨θ − θ′,∇f(θ′)⟩ .

For a convex differentiable function ρ : Rd → R, let Zρ
n(θ) =

∑n
t=1 ℓt(θ) + ρ(θ) and θ̂n = argminθ∈Rd Z

ρ
n(θ).

The Bregman information gain is

γρn = − log

(∫
exp(−BZ

ρ
n
(θ, θ̂n))dθ∫

exp(−ρ(θ))dθ

)
.

If ψ is M -smooth (|ψ′′(z)| ≤M) and ρ = 1
2γ2 ∥θ∥22, then

γρn ≤
1

2
log det(Mγ2Λn + Id) ≤

d

2
log(1 + γ2ML2n

d
) ,

where Λn =
∑n

t=1XtX⊤
t and L = maxt∈[n] ∥Xt∥2.

9

Bregman Divergence and Bregman Information Gain

For a convex differentiable function f : Rd → R, the Bregman divergence is

Bf (θ, θ
′) = f(θ)− f(θ′)− ⟨θ − θ′,∇f(θ′)⟩ .

For a convex differentiable function ρ : Rd → R, let Zρ
n(θ) =

∑n
t=1 ℓt(θ) + ρ(θ) and θ̂n = argminθ∈Rd Z

ρ
n(θ).

The Bregman information gain is

γρn = − log

(∫
exp(−BZ

ρ
n
(θ, θ̂n))dθ∫

exp(−ρ(θ))dθ

)
.

If ψ is M -smooth (|ψ′′(z)| ≤M) and ρ = 1
2γ2 ∥θ∥22, then

γρn ≤
1

2
log det(Mγ2Λn + Id) ≤

d

2
log(1 + γ2ML2n

d
) ,

where Λn =
∑n

t=1XtX⊤
t and L = maxt∈[n] ∥Xt∥2.

9

Bregman Divergence and Bregman Information Gain

For a convex differentiable function f : Rd → R, the Bregman divergence is

Bf (θ, θ
′) = f(θ)− f(θ′)− ⟨θ − θ′,∇f(θ′)⟩ .

For a convex differentiable function ρ : Rd → R, let Zρ
n(θ) =

∑n
t=1 ℓt(θ) + ρ(θ) and θ̂n = argminθ∈Rd Z

ρ
n(θ).

The Bregman information gain is

γρn = − log

(∫
exp(−BZ

ρ
n
(θ, θ̂n))dθ∫

exp(−ρ(θ))dθ

)
.

If ψ is M -smooth (|ψ′′(z)| ≤M) and ρ = 1
2γ2 ∥θ∥22, then

γρn ≤
1

2
log det(Mγ2Λn + Id) ≤

d

2
log(1 + γ2ML2n

d
) ,

where Λn =
∑n

t=1XtX⊤
t and L = maxt∈[n] ∥Xt∥2.

9

Bregman Divergence and Bregman Information Gain

For a convex differentiable function f : Rd → R, the Bregman divergence is

Bf (θ, θ
′) = f(θ)− f(θ′)− ⟨θ − θ′,∇f(θ′)⟩ .

For a convex differentiable function ρ : Rd → R, let Zρ
n(θ) =

∑n
t=1 ℓt(θ) + ρ(θ) and θ̂n = argminθ∈Rd Z

ρ
n(θ).

The Bregman information gain is

γρn = − log

(∫
exp(−BZ

ρ
n
(θ, θ̂n))dθ∫

exp(−ρ(θ))dθ

)
.

If ψ is M -smooth (|ψ′′(z)| ≤M) and ρ = 1
2γ2 ∥θ∥22, then

γρn ≤
1

2
log det(Mγ2Λn + Id) ≤

d

2
log(1 + γ2ML2n

d
) ,

where Λn =
∑n

t=1XtX⊤
t and L = maxt∈[n] ∥Xt∥2.

9

Exponentially Weighted Average Forecaster

The Exponentially Weighted Average (EWA) forecaster takes as input a prior

q1(θ) ∝ exp(−ρ(θ)) .

For subsequent rounds t = 2, 3, . . . , the EWA forecaster plays

qt(θ) ∝ q1(θ) exp

(
t−1∑
k=1

ℓk(θ)

)
.

Claim: For any choice of ρ,
regretqn (θ̄n) ≤ γρn + ρ(θ̄n) .

10

Exponentially Weighted Average Forecaster

The Exponentially Weighted Average (EWA) forecaster takes as input a prior

q1(θ) ∝ exp(−ρ(θ)) .

For subsequent rounds t = 2, 3, . . . , the EWA forecaster plays

qt(θ) ∝ q1(θ) exp

(
t−1∑
k=1

ℓk(θ)

)
.

Claim: For any choice of ρ,
regretqn (θ̄n) ≤ γρn + ρ(θ̄n) .

10

Exponentially Weighted Average Forecaster

The Exponentially Weighted Average (EWA) forecaster takes as input a prior

q1(θ) ∝ exp(−ρ(θ)) .

For subsequent rounds t = 2, 3, . . . , the EWA forecaster plays

qt(θ) ∝ q1(θ) exp

(
t−1∑
k=1

ℓk(θ)

)
.

Claim: For any choice of ρ,
regretqn (θ̄n) ≤ γρn + ρ(θ̄n) .

10

OTCS for Smooth GLMs (Adaptive Design)

Suppose that ψ is M -smooth, and fix γ > 0. Set ρ = 1
2γ2 ∥θ∥22 and let θ̂n = argminθ∈Rd{

∑n
t=1 ℓt(θ) + ρ(θ)}.

Then, for any δ ∈ (0, 1], the sets Θ1,Θ2, . . . satisfy P(∃n ≥ 1 : θ⋆ /∈ Θn) ≤ δ, where

Θn =

{
θ :

n∑
t=1

ℓt(θ)−
n∑

t=1

ℓt(θ̂n) ≤ 1
2
log det(γ2MΛn + Id) +

∥θ̂n∥22
2γ2 + log 1

δ

}

If it is known that ∥θ⋆∥2 ≤ B, then we can also use

Θn =
{
θ : BZ

ρ
n
(θ, θ̂n) ≤ 1

2
log det(γ2MΛn + Id) + B2

2γ2 + log 1
δ

}

For general (smooth) GLMs, we match the best confidence sequence that we’re aware of (except the radius of
ours is dimension-free).

For linear models, the Bregman ball becomes the ellipsoid,

Θn =

{
θ : ∥θ − θ̂n∥2Λn+ 1

γ2 Id
≤ log det(γ2MΛn + Id) + B2

γ2 + 2 log 1
δ

}

This matches the one you would get from self-normalised concentration (with slightly better constants).

11

OTCS for Smooth GLMs (Adaptive Design)

Suppose that ψ is M -smooth, and fix γ > 0. Set ρ = 1
2γ2 ∥θ∥22 and let θ̂n = argminθ∈Rd{

∑n
t=1 ℓt(θ) + ρ(θ)}.

Then, for any δ ∈ (0, 1], the sets Θ1,Θ2, . . . satisfy P(∃n ≥ 1 : θ⋆ /∈ Θn) ≤ δ, where

Θn =

{
θ :

n∑
t=1

ℓt(θ)−
n∑

t=1

ℓt(θ̂n) ≤ 1
2
log det(γ2MΛn + Id) +

∥θ̂n∥22
2γ2 + log 1

δ

}

If it is known that ∥θ⋆∥2 ≤ B, then we can also use

Θn =
{
θ : BZ

ρ
n
(θ, θ̂n) ≤ 1

2
log det(γ2MΛn + Id) + B2

2γ2 + log 1
δ

}

For general (smooth) GLMs, we match the best confidence sequence that we’re aware of (except the radius of
ours is dimension-free).

For linear models, the Bregman ball becomes the ellipsoid,

Θn =

{
θ : ∥θ − θ̂n∥2Λn+ 1

γ2 Id
≤ log det(γ2MΛn + Id) + B2

γ2 + 2 log 1
δ

}

This matches the one you would get from self-normalised concentration (with slightly better constants).

11

OTCS for Smooth GLMs (Adaptive Design)

Suppose that ψ is M -smooth, and fix γ > 0. Set ρ = 1
2γ2 ∥θ∥22 and let θ̂n = argminθ∈Rd{

∑n
t=1 ℓt(θ) + ρ(θ)}.

Then, for any δ ∈ (0, 1], the sets Θ1,Θ2, . . . satisfy P(∃n ≥ 1 : θ⋆ /∈ Θn) ≤ δ, where

Θn =

{
θ :

n∑
t=1

ℓt(θ)−
n∑

t=1

ℓt(θ̂n) ≤ 1
2
log det(γ2MΛn + Id) +

∥θ̂n∥22
2γ2 + log 1

δ

}

If it is known that ∥θ⋆∥2 ≤ B, then we can also use

Θn =
{
θ : BZ

ρ
n
(θ, θ̂n) ≤ 1

2
log det(γ2MΛn + Id) + B2

2γ2 + log 1
δ

}

For general (smooth) GLMs, we match the best confidence sequence that we’re aware of (except the radius of
ours is dimension-free).

For linear models, the Bregman ball becomes the ellipsoid,

Θn =

{
θ : ∥θ − θ̂n∥2Λn+ 1

γ2 Id
≤ log det(γ2MΛn + Id) + B2

γ2 + 2 log 1
δ

}

This matches the one you would get from self-normalised concentration (with slightly better constants).

11

OTCS for Smooth GLMs (Adaptive Design)

Suppose that ψ is M -smooth, and fix γ > 0. Set ρ = 1
2γ2 ∥θ∥22 and let θ̂n = argminθ∈Rd{

∑n
t=1 ℓt(θ) + ρ(θ)}.

Then, for any δ ∈ (0, 1], the sets Θ1,Θ2, . . . satisfy P(∃n ≥ 1 : θ⋆ /∈ Θn) ≤ δ, where

Θn =

{
θ :

n∑
t=1

ℓt(θ)−
n∑

t=1

ℓt(θ̂n) ≤ 1
2
log det(γ2MΛn + Id) +

∥θ̂n∥22
2γ2 + log 1

δ

}

If it is known that ∥θ⋆∥2 ≤ B, then we can also use

Θn =
{
θ : BZ

ρ
n
(θ, θ̂n) ≤ 1

2
log det(γ2MΛn + Id) + B2

2γ2 + log 1
δ

}

For general (smooth) GLMs, we match the best confidence sequence that we’re aware of (except the radius of
ours is dimension-free).

For linear models, the Bregman ball becomes the ellipsoid,

Θn =

{
θ : ∥θ − θ̂n∥2Λn+ 1

γ2 Id
≤ log det(γ2MΛn + Id) + B2

γ2 + 2 log 1
δ

}

This matches the one you would get from self-normalised concentration (with slightly better constants).

11

OTCS for Smooth GLMs (Adaptive Design)

Suppose that ψ is M -smooth, and fix γ > 0. Set ρ = 1
2γ2 ∥θ∥22 and let θ̂n = argminθ∈Rd{

∑n
t=1 ℓt(θ) + ρ(θ)}.

Then, for any δ ∈ (0, 1], the sets Θ1,Θ2, . . . satisfy P(∃n ≥ 1 : θ⋆ /∈ Θn) ≤ δ, where

Θn =

{
θ :

n∑
t=1

ℓt(θ)−
n∑

t=1

ℓt(θ̂n) ≤ 1
2
log det(γ2MΛn + Id) +

∥θ̂n∥22
2γ2 + log 1

δ

}

If it is known that ∥θ⋆∥2 ≤ B, then we can also use

Θn =
{
θ : BZ

ρ
n
(θ, θ̂n) ≤ 1

2
log det(γ2MΛn + Id) + B2

2γ2 + log 1
δ

}

For general (smooth) GLMs, we match the best confidence sequence that we’re aware of (except the radius of
ours is dimension-free).

For linear models, the Bregman ball becomes the ellipsoid,

Θn =

{
θ : ∥θ − θ̂n∥2Λn+ 1

γ2 Id
≤ log det(γ2MΛn + Id) + B2

γ2 + 2 log 1
δ

}

This matches the one you would get from self-normalised concentration (with slightly better constants).

11

OTCS for Smooth GLMs (Adaptive Design)

Suppose that ψ is M -smooth, and fix γ > 0. Set ρ = 1
2γ2 ∥θ∥22 and let θ̂n = argminθ∈Rd{

∑n
t=1 ℓt(θ) + ρ(θ)}.

Then, for any δ ∈ (0, 1], the sets Θ1,Θ2, . . . satisfy P(∃n ≥ 1 : θ⋆ /∈ Θn) ≤ δ, where

Θn =

{
θ :

n∑
t=1

ℓt(θ)−
n∑

t=1

ℓt(θ̂n) ≤ 1
2
log det(γ2MΛn + Id) +

∥θ̂n∥22
2γ2 + log 1

δ

}

If it is known that ∥θ⋆∥2 ≤ B, then we can also use

Θn =
{
θ : BZ

ρ
n
(θ, θ̂n) ≤ 1

2
log det(γ2MΛn + Id) + B2

2γ2 + log 1
δ

}

For general (smooth) GLMs, we match the best confidence sequence that we’re aware of (except the radius of
ours is dimension-free).

For linear models, the Bregman ball becomes the ellipsoid,

Θn =

{
θ : ∥θ − θ̂n∥2Λn+ 1

γ2 Id
≤ log det(γ2MΛn + Id) + B2

γ2 + 2 log 1
δ

}

This matches the one you would get from self-normalised concentration (with slightly better constants).
11

OTCS for Oblivious Design

Let Sn,b = {θ : maxt∈[n] |⟨θ,Xt⟩| ≤ b}, let θ̂n,b = argminθ∈Sn,b

∑n
t=1 ℓt(θ) and let Ψ(θ) =

∑n
t=1 ψ(⟨θ,Xt⟩).

Suppose that θ⋆ satisfies supt∈[n] |⟨θ⋆, Xt⟩| ≤ b (w.p. 1) that ψ is M -smooth on R and m-strongly-convex on
[−b, b]. Set ρ(θ) = 1

2γ2 ∥θ − θ⋆∥2Λn
.

For any δ ∈ (0, 1], the OTCS with oblivious design tells us that

P
(∑n

t=1ℓt(θ
⋆)−

∑n
t=1ℓt(θ̂n,b) ≤ d

2
log(1 +Mγ2) + 1

2γ2 ∥θ̂n,b − θ⋆∥2Λn
+ log 1

δ

)
.

Using the first-order optimality condition satisfied by θ̂n,b and strong convexity of ψ on [−b, b],

BΨ(θ⋆, θ̂n,b) ≤
∑n

t=1ℓt(θ)−
∑n

t=1ℓt(θ̂n,b) , and 1
2γ2 ∥θ̂n,b − θ⋆∥2Λn

≤ 1
mγ2 BΨ(θ⋆, θ̂n,b) .

Therefore (with γ2 = 2/m), the set Θn satisfies P(θ⋆ /∈ Θn) ≤ δ, where

Θn =
{
θ : BΨ(θ, θ̂b,n) ≤ d log(1 + 2M/m) + 2 log 1

δ

}
.

For linear models, we get the ellipsoid

Θn =
{
θ : ∥θ − θ̂b,n∥2Λn

≤ 2d log(3) + 4 log 1
δ

}
.

12

OTCS for Oblivious Design

Let Sn,b = {θ : maxt∈[n] |⟨θ,Xt⟩| ≤ b}, let θ̂n,b = argminθ∈Sn,b

∑n
t=1 ℓt(θ) and let Ψ(θ) =

∑n
t=1 ψ(⟨θ,Xt⟩).

Suppose that θ⋆ satisfies supt∈[n] |⟨θ⋆, Xt⟩| ≤ b (w.p. 1) that ψ is M -smooth on R and m-strongly-convex on
[−b, b]. Set ρ(θ) = 1

2γ2 ∥θ − θ⋆∥2Λn
.

For any δ ∈ (0, 1], the OTCS with oblivious design tells us that

P
(∑n

t=1ℓt(θ
⋆)−

∑n
t=1ℓt(θ̂n,b) ≤ d

2
log(1 +Mγ2) + 1

2γ2 ∥θ̂n,b − θ⋆∥2Λn
+ log 1

δ

)
.

Using the first-order optimality condition satisfied by θ̂n,b and strong convexity of ψ on [−b, b],

BΨ(θ⋆, θ̂n,b) ≤
∑n

t=1ℓt(θ)−
∑n

t=1ℓt(θ̂n,b) , and 1
2γ2 ∥θ̂n,b − θ⋆∥2Λn

≤ 1
mγ2 BΨ(θ⋆, θ̂n,b) .

Therefore (with γ2 = 2/m), the set Θn satisfies P(θ⋆ /∈ Θn) ≤ δ, where

Θn =
{
θ : BΨ(θ, θ̂b,n) ≤ d log(1 + 2M/m) + 2 log 1

δ

}
.

For linear models, we get the ellipsoid

Θn =
{
θ : ∥θ − θ̂b,n∥2Λn

≤ 2d log(3) + 4 log 1
δ

}
.

12

OTCS for Oblivious Design

Let Sn,b = {θ : maxt∈[n] |⟨θ,Xt⟩| ≤ b}, let θ̂n,b = argminθ∈Sn,b

∑n
t=1 ℓt(θ) and let Ψ(θ) =

∑n
t=1 ψ(⟨θ,Xt⟩).

Suppose that θ⋆ satisfies supt∈[n] |⟨θ⋆, Xt⟩| ≤ b (w.p. 1) that ψ is M -smooth on R and m-strongly-convex on
[−b, b]. Set ρ(θ) = 1

2γ2 ∥θ − θ⋆∥2Λn
.

For any δ ∈ (0, 1], the OTCS with oblivious design tells us that

P
(∑n

t=1ℓt(θ
⋆)−

∑n
t=1ℓt(θ̂n,b) ≤ d

2
log(1 +Mγ2) + 1

2γ2 ∥θ̂n,b − θ⋆∥2Λn
+ log 1

δ

)
.

Using the first-order optimality condition satisfied by θ̂n,b and strong convexity of ψ on [−b, b],

BΨ(θ⋆, θ̂n,b) ≤
∑n

t=1ℓt(θ)−
∑n

t=1ℓt(θ̂n,b) , and 1
2γ2 ∥θ̂n,b − θ⋆∥2Λn

≤ 1
mγ2 BΨ(θ⋆, θ̂n,b) .

Therefore (with γ2 = 2/m), the set Θn satisfies P(θ⋆ /∈ Θn) ≤ δ, where

Θn =
{
θ : BΨ(θ, θ̂b,n) ≤ d log(1 + 2M/m) + 2 log 1

δ

}
.

For linear models, we get the ellipsoid

Θn =
{
θ : ∥θ − θ̂b,n∥2Λn

≤ 2d log(3) + 4 log 1
δ

}
.

12

OTCS for Oblivious Design

Let Sn,b = {θ : maxt∈[n] |⟨θ,Xt⟩| ≤ b}, let θ̂n,b = argminθ∈Sn,b

∑n
t=1 ℓt(θ) and let Ψ(θ) =

∑n
t=1 ψ(⟨θ,Xt⟩).

Suppose that θ⋆ satisfies supt∈[n] |⟨θ⋆, Xt⟩| ≤ b (w.p. 1) that ψ is M -smooth on R and m-strongly-convex on
[−b, b]. Set ρ(θ) = 1

2γ2 ∥θ − θ⋆∥2Λn
.

For any δ ∈ (0, 1], the OTCS with oblivious design tells us that

P
(∑n

t=1ℓt(θ
⋆)−

∑n
t=1ℓt(θ̂n,b) ≤ d

2
log(1 +Mγ2) + 1

2γ2 ∥θ̂n,b − θ⋆∥2Λn
+ log 1

δ

)
.

Using the first-order optimality condition satisfied by θ̂n,b and strong convexity of ψ on [−b, b],

BΨ(θ⋆, θ̂n,b) ≤
∑n

t=1ℓt(θ)−
∑n

t=1ℓt(θ̂n,b) , and 1
2γ2 ∥θ̂n,b − θ⋆∥2Λn

≤ 1
mγ2 BΨ(θ⋆, θ̂n,b) .

Therefore (with γ2 = 2/m), the set Θn satisfies P(θ⋆ /∈ Θn) ≤ δ, where

Θn =
{
θ : BΨ(θ, θ̂b,n) ≤ d log(1 + 2M/m) + 2 log 1

δ

}
.

For linear models, we get the ellipsoid

Θn =
{
θ : ∥θ − θ̂b,n∥2Λn

≤ 2d log(3) + 4 log 1
δ

}
.

12

OTCS for Oblivious Design

Let Sn,b = {θ : maxt∈[n] |⟨θ,Xt⟩| ≤ b}, let θ̂n,b = argminθ∈Sn,b

∑n
t=1 ℓt(θ) and let Ψ(θ) =

∑n
t=1 ψ(⟨θ,Xt⟩).

Suppose that θ⋆ satisfies supt∈[n] |⟨θ⋆, Xt⟩| ≤ b (w.p. 1) that ψ is M -smooth on R and m-strongly-convex on
[−b, b]. Set ρ(θ) = 1

2γ2 ∥θ − θ⋆∥2Λn
.

For any δ ∈ (0, 1], the OTCS with oblivious design tells us that

P
(∑n

t=1ℓt(θ
⋆)−

∑n
t=1ℓt(θ̂n,b) ≤ d

2
log(1 +Mγ2) + 1

2γ2 ∥θ̂n,b − θ⋆∥2Λn
+ log 1

δ

)
.

Using the first-order optimality condition satisfied by θ̂n,b and strong convexity of ψ on [−b, b],

BΨ(θ⋆, θ̂n,b) ≤
∑n

t=1ℓt(θ)−
∑n

t=1ℓt(θ̂n,b) , and 1
2γ2 ∥θ̂n,b − θ⋆∥2Λn

≤ 1
mγ2 BΨ(θ⋆, θ̂n,b) .

Therefore (with γ2 = 2/m), the set Θn satisfies P(θ⋆ /∈ Θn) ≤ δ, where

Θn =
{
θ : BΨ(θ, θ̂b,n) ≤ d log(1 + 2M/m) + 2 log 1

δ

}
.

For linear models, we get the ellipsoid

Θn =
{
θ : ∥θ − θ̂b,n∥2Λn

≤ 2d log(3) + 4 log 1
δ

}
.

12

Conclusion

Conclusion

• Regret bounds can be converted into confidence sets/sequences for GLMs

• Also in the paper: confidence sets with different shapes, confidence sets for sparse GLMs

• How to do this with the Normalised Maximum Likelihood forecaster instead of EWA?

• For which qn (if any) is exp
(∑n

t=1

(
ℓt(θ

⋆)− Lt(qt)
))

an optimal e-variable/process?

The end. Thank you!

13

Conclusion

• Regret bounds can be converted into confidence sets/sequences for GLMs

• Also in the paper: confidence sets with different shapes, confidence sets for sparse GLMs

• How to do this with the Normalised Maximum Likelihood forecaster instead of EWA?

• For which qn (if any) is exp
(∑n

t=1

(
ℓt(θ

⋆)− Lt(qt)
))

an optimal e-variable/process?

The end. Thank you!

13

Conclusion

• Regret bounds can be converted into confidence sets/sequences for GLMs

• Also in the paper: confidence sets with different shapes, confidence sets for sparse GLMs

• How to do this with the Normalised Maximum Likelihood forecaster instead of EWA?

• For which qn (if any) is exp
(∑n

t=1

(
ℓt(θ

⋆)− Lt(qt)
))

an optimal e-variable/process?

The end. Thank you!

13

Conclusion

• Regret bounds can be converted into confidence sets/sequences for GLMs

• Also in the paper: confidence sets with different shapes, confidence sets for sparse GLMs

• How to do this with the Normalised Maximum Likelihood forecaster instead of EWA?

• For which qn (if any) is exp
(∑n

t=1

(
ℓt(θ

⋆)− Lt(qt)
))

an optimal e-variable/process?

The end. Thank you!

13

Conclusion

• Regret bounds can be converted into confidence sets/sequences for GLMs

• Also in the paper: confidence sets with different shapes, confidence sets for sparse GLMs

• How to do this with the Normalised Maximum Likelihood forecaster instead of EWA?

• For which qn (if any) is exp
(∑n

t=1

(
ℓt(θ

⋆)− Lt(qt)
))

an optimal e-variable/process?

The end. Thank you!

13

