Confidence Sequences for Generalised Linear Models via Regret Analysis

Hamish Flynn
July 3, 2025

®@={p> la-al, (L, 4
o=1e: &,(e,'s..)gf.&A- ks

Warmest Thanks

Eugenio Clerico Wojciech Kottowski Gergely Neu

This Work

Assume we know a bit about online learning (or universal coding).

. .
PETER D. GRUNWALD

escription

ength

PREDICTION, LEARNING, AND GAMES Online Convex Optimization

Introduction to
Nicold Cesa-Bianchi Gbor Lugosi

cond edition

Elad Hazan

This Work

Assume we know a bit about online learning (or universal coding).

. .
PETER D. GRUNWALD

escription

ength

PREDICTION, LEARNING, AND GAMES Online Convex Optimization

Introduction to
Nicold Cesa-Bianchi Gbor Lugosi

second edition

Elad Hazan

We want to construct confidence sequences for GLMs without doing any actual work.

Generalised Linear Models

Generalised Linear Model:
- Covariates X1,..., X, € R?
* Responses Yi,...,Y, €R
+ Likelihood p(Y:|X:,0") = exp ((8*, z)y — ¥((6", x))) h(y)

The log-partition function ¢ : R — R is convex.

Generalised Linear Models

Generalised Linear Model:
- Covariates X1,..., X, € R?
* Responses Yi,...,Y, €R
+ Likelihood p(Y:|X:,0") = exp ((8*, z)y — ¥((6", x))) h(y)

The log-partition function ¢ : R — R is convex.

Log-Likelihood Loss: Define ¢:(0) = —log(p(Y:| Xt, 0)).

Generalised Linear Models

Generalised Linear Model:
- Covariates X1,..., X, € R?
* Responses Yi,...,Y, €R
+ Likelihood p(Y:|X:,0") = exp ((8*, z)y — ¥((6", x))) h(y)

The log-partition function ¢ : R — R is convex.
Log-Likelihood Loss: Define ¢:(0) = —log(p(Y:| Xt, 0)).

Adaptive Design: X; depends on X;,Y1,..., X 1,Y;_1.

Generalised Linear Models

Generalised Linear Model:
- Covariates X1,..., X, € R?
* Responses Yi,...,Y, €R
+ Likelihood p(Y:|X:,0") = exp ((8*, z)y — ¥((6", x))) h(y)

The log-partition function ¢ : R — R is convex.
Log-Likelihood Loss: Define ¢:(0) = —log(p(Y:| Xt, 0)).
Adaptive Design: X; depends on X;,Y1,..., X 1,Y;_1.

Oblivious Design: X; does notdepend on Y3,...,Y:_1.

Objective and Claim

Adaptive Design: For § € (0, 1], a §-confidence sequence for 6* is a sequence of sets ©1, O, ..., such that

P(3n>1:0"¢0,)<4.

Objective and Claim

Adaptive Design: For § € (0, 1], a §-confidence sequence for 6* is a sequence of sets ©1, O, ..., such that

P(3n>1:0"¢0,)<4.

Oblivious Design: A §-confidence set for 6* is a set ©,,, such that

(6" ¢ ©n) < 6.

Objective and Claim

Adaptive Design: For § € (0, 1], a §-confidence sequence for 6* is a sequence of sets ©1, O, ..., such that

P(3n>1:0"¢0,)<4.

Oblivious Design: A §-confidence set for 6* is a set ©,,, such that

P(0* & ©n) <0

In this talk, we will (mostly) focus on sets of the form

@n—{ezizt(e)— inf Xn:zt(e')gﬁn}
t=1

’ d
0'€RY

Objective and Claim

Adaptive Design: For § € (0, 1], a §-confidence sequence for 6* is a sequence of sets ©1, O, ..., such that

P(3n>1:0"¢0,)<4.

Oblivious Design: A §-confidence set for 6* is a set ©,,, such that

P(0* & ©n) <0

In this talk, we will (mostly) focus on sets of the form

@n—{ezizt(e)— inf zn:zt(e')gﬁn}
t=1

’ d
0'€RY

Online-to-confidence-set conversion: Use the output and/or regret bound of an online learning algorithm to
determine f,,.

Objective and Claim

Adaptive Design: For § € (0, 1], a §-confidence sequence for 6* is a sequence of sets ©1, O, ..., such that

P(3n>1:0"¢0,)<4.

Oblivious Design: A §-confidence set for 6* is a set ©,,, such that

(6" ¢ ©n) < 6.

In this talk, we will (mostly) focus on sets of the form

@n—{ezzn:zt(e)— inf zn:zt(e')gﬁn}
t=1

0'eR? i1
Online-to-confidence-set conversion: Use the output and/or regret bound of an online learning algorithm to

determine f,,.

Claim: We can recover all confidence sequences for GLMs via OTCS (at least all confidence sequences with
non-asymptotic coverage guarantees).

Online-To-Confidence-Set Conversion

(for adaptive design)

Sequential Probability Assignment

Protocol: Fort =1,2,...,n:

1. Environment reveals X; to the learner
2. Learner picks Q: € Ag with density ¢;
3. Environment reveals Y; to the learner,
4. Learner incurs the log loss L;(q:) = —log [exp(—£¢(6))q: () df

Sequential Probability Assignment

Protocol: Fort =1,2,...,n:

1. Environment reveals X; to the learner
2. Learner picks Q: € Ag with density ¢;
3. Environment reveals Y; to the learner,
4. Learner incurs the log loss L;(q:) = —log [exp(—£¢(6))q: () df

q" = (q1,...,qn) must be predictable w.rt. F = (F:)}_,, where 7t = o(X1,Y1,..., X+, Y2, X¢41).

Sequential Probability Assignment

Protocol: Fort =1,2,...,n
1. Environment reveals X; to the learner
2. Learner picks Q: € Ag with density ¢;
3. Environment reveals Y; to the learner,
4. Learner incurs the log loss L;(q:) = —log [exp(—£¢(6))q: () df
q" = (q1,...,qn) must be predictable w.rt. F = (F:)}_,, where 7t = o(X1,Y1,..., X+, Y2, X¢41).

Regret: The regret of ¢™ w.r.t. a comparator § € © is

regret n Z Et (gqe) — € (0))
t=1

Sequential Probability Assignment

Protocol: Fort =1,2,...,n

1. Environment reveals X; to the learner
2. Learner picks Q: € Ag with density ¢;
3. Environment reveals Y; to the learner,
4. Learner incurs the log loss L;(q:) = —log [exp(—£¢(6))q: () df

q" = (q1,...,qn) must be predictable w.rt. F = (F:)}_,, where 7t = o(X1,Y1,..., X+, Y2, X¢41).

Regret: The regret of ¢™ w.r.t. a comparator § € © is

regret n Z Et (qt) — 0t 0))
t=1

The minimax regret inf¢n supg regret n () for linear models (and some GLMs) is of the order dlog(n).

Sequential Probability Assignment

Protocol: Fort =1,2,...,n
1. Environment reveals X; to the learner
2. Learner picks Q: € Ag with density ¢;
3. Environment reveals Y; to the learner,
4. Learner incurs the log loss L;(q:) = —log [exp(—£¢(6))q: () df
q" = (q1,...,qn) must be predictable w.rt. F = (F:)}_,, where 7t = o(X1,Y1,..., X+, Y2, X¢41).

Regret: The regret of ¢™ w.r.t. a comparator § € © is

regret n Z Et (qt) — 0t 0))
t=1

The minimax regret inf¢n supg regret n () for linear models (and some GLMs) is of the order dlog(n).

Note: This can be made more general by playing distributions on) (see our paper).

Online-To-Confidence Set Conversion (Adaptive Design)

For any sequence of comparators 61, 65, . .. and any F-predictable ¢™, the sets ©1, @2, ... form a §-CS, where

n
0, = {0 eR?: Z (€:(0) — £:(0n)) < regretqn(én) + log (15} .
t=1

Online-To-Confidence Set Conversion (Adaptive Design)

For any sequence of comparators 61, 65, . .. and any F-predictable ¢™, the sets ©1, @2, ... form a §-CS, where

n
e, = {9 ERY: D" (L(0) — £4(0n)) < regretyn (0n) + log };} .
t=1

Proof. First,
> (€(0*) = €:(6n)) =D (Lelae) — £e(0n)) + > (€:(6%) — Li(qr)) -
t=1 t=1 t=1

Online-To-Confidence Set Conversion (Adaptive Design)

For any sequence of comparators 61, 65, . .. and any F-predictable ¢™, the sets ©1, @2, ... form a §-CS, where

n
e, = {9 ERY: D" (L(0) — £4(0n)) < regretyn (0n) + log };} .
t=1

Proof. First,
> (€(0%) = €:(6n)) =D (Lelar) — £e(0n)) + > (€:(6%) — Lo(ar)) -
t=1 t=1 t=1

regret n (1)

Online-To-Confidence Set Conversion (Adaptive Design)

For any sequence of comparators 61, 65, . .. and any F-predictable ¢™, the sets ©1, @2, ... form a §-CS, where

n
e, = {6’ eR?: Z (€:(0) — £e(0n)) < regretgn (0) + log (1;} .
t=1

Proof. First,
> (€(0%) = €:(6n)) =D (Lelar) — £e(0n)) + > (€:(6%) — Lo(ar)) -
t=1 t=1 t=1

regret n (1)

Next, we notice that the second term is the logarithm of a non-negative F-martingale.

S o p(Y:| X+, 6)
exp(g(&(e) zt(qt))> H/ A ND q+(0) 6.

Online-To-Confidence Set Conversion (Adaptive Design)

For any sequence of comparators 61, 65, . .. and any F-predictable ¢™, the sets ©1, @2, ... form a §-CS, where

n
e, = {6’ eR?: Z (€:(0) — £e(0n)) < regretgn (0) + log (1;} .
t=1

Proof. First,
> (€(0%) = €:(6n)) =D (Lelar) — £e(0n)) + > (€:(6%) — Lo(ar)) -
t=1 t=1 t=1

regret n (1)

Next, we notice that the second term is the logarithm of a non-negative F-martingale.
n
* p(}/t |Xt7 9)
L:(0%) — L) dé.
o (5 - e) < I [S5 e

Therefore,

n
< Z (€e(6%) — £4(6n)) > regretyn (8n) + log (1§> <3J.

Online-To-Confidence-Set Conversion

(for oblivious design)

Transductive Sequential Probability Assignment

Protocol: The environment reveals X;,..., X, ¢ R%. Fort =1,2,...,n:
1. Learner picks Q: € Ag with density ¢,
2. Environment reveals Y; € R to the learner,

3. Learner incurs the log loss £:(g:) = — log [exp(—£:(6))q:(6) do

Transductive Sequential Probability Assignment

Protocol: The environment reveals X;,..., X, ¢ R%. Fort =1,2,...,n:

1. Learner picks Q: € Ag with density ¢,
2. Environment reveals Y; € R to the learner,

3. Learner incurs the log loss £:(g:) = — log [exp(—£:(6))q:(6) do

¢" must be predictable w.r.t. F = (Fi)io, where F, = o(X1,..., X0, Y1,...,Y3).

Transductive Sequential Probability Assignment

Protocol: The environment reveals X;,..., X, ¢ R%. Fort =1,2,...,n:

1. Learner picks Q: € Ag with density ¢,
2. Environment reveals Y; € R to the learner,

3. Learner incurs the log loss £:(g:) = — log [exp(—£:(6))q:(6) do

¢" must be predictable w.rt. F = (F,)/_o, where F; = (X1, ..., Xn, Yi,...,Y)).

Regret: The regret of ¢" = (q1, .. ., qn) W.r.t. a comparator § € © is

n

regret, » (0) = Z (Li(qe) — £:(6)) .

t=1

Online-To-Confidence Set Conversion (Oblivious Design)

For any comparator 0,, and any F-predictable g™, the set ©,, is a 5-CS, where

0, = {9 ERT: D " (€:(0) — £:(6n)) < regret n () + log ;} .
t=1

Online-To-Confidence Set Conversion (Oblivious Design)

For any comparator 0,, and any F-predictable g™, the set ©,, is a 5-CS, where

O, = {9 eR?: i (0¢(0) — £4(0n)) < regret n (0n) + log ;} .

t=1

Proof. Basically the same as last time. First,

D7 (0(0%) — €4(6n)) = regretyn (Bn) + > (:(0%) — Li(qr)) -
t=1 t=1

Online-To-Confidence Set Conversion (Oblivious Design)

For any comparator 0,, and any F-predictable g™, the set ©,, is a 5-CS, where

O, = {9 eR?: i (0¢(0) — £4(0n)) < regret n (0n) + log ;} .

t=1

Proof. Basically the same as last time. First,

D7 (0(0%) — €4(6n)) = regretyn (Bn) + > (:(0%) — Li(qr)) -
t=1 t=1

As long as the design is oblivious, the second term is the logarithm of a non-negative F-martingale. Therefore,

P <Zn: (€:(0%) — £4(0,)) > regret n (0n) + log (15) <§4.
t=1

Online-To-Confidence-Set Conversions for Smooth GLMs

Bregman Divergence and Bregman Information Gain

For a convex differentiable function f : R¢ — R, the Bregman divergence is

By (0,0') = f(0) — f(0') — (0 — 0",V f(0)).

Bregman Divergence and Bregman Information Gain

For a convex differentiable function f : R¢ — R, the Bregman divergence is
By (0,0") = f(0) — f(6') — (0 — 0", Vf(¥')).

For a convex differentiable function p : R% — R, let Z5(0) = S 7, £:(6) + p(0) and 6,, = argmingcpa 24 (0).

Bregman Divergence and Bregman Information Gain

For a convex differentiable function f : R¢ — R, the Bregman divergence is
By (0,0") = f(0) — f(6') — (0 — 0", Vf(¥')).

For a convex differentiable function p : R% — R, let Z5(0) = S 7, £:(6) + p(0) and 6,, = argmingcpa 24 (0).

The Bregman information gain is

— J exp(=Byp (0,0,))d0
T T TR Texp(—p(0))d0)

Bregman Divergence and Bregman Information Gain

For a convex differentiable function f : R¢ — R, the Bregman divergence is

By (0,0') = f(0) — f(0') — (0 — 0",V f(0)).

For a convex differentiable function p : R% — R, let Z5(0) = S 7, £:(6) + p(0) and 6,, = argmingcpa 24 (0).

The Bregman information gain is

— J exp(=Byp (0,0,))d0
T T TR Texp(—p(0))d0)

If is M-smooth (j4"(2)] < M) and p = 525 |6||3, then

Ny

1 2 2
i < 5 logdet(M~*Ap +1d) < log(1 + TG,

where A, =377 XX, and L = maxe[, [| X¢|l2-

Exponentially Weighted Average Forecaster

The Exponentially Weighted Average (EWA) forecaster takes as input a prior

91(0) o< exp(—p(0)) -

10

Exponentially Weighted Average Forecaster

The Exponentially Weighted Average (EWA) forecaster takes as input a prior
q1(0) o exp(—p(0)) -

For subsequent rounds ¢t = 2,3, ..., the EWA forecaster plays

t—1
q¢(0) o< q1(0) exp <Z Zk(9)> .

k=1

10

Exponentially Weighted Average Forecaster

The Exponentially Weighted Average (EWA) forecaster takes as input a prior
q1(0) o exp(—p(0)) -

For subsequent rounds ¢t = 2,3, ..., the EWA forecaster plays

t—1
q¢(0) o< q1(0) exp <Z Zk(9)> .

k=1

Claim: For any choice of p,
regretn (O0n) < vf) + p(0n) -

10

OTCS for Smooth GLMs (Adaptive Design)

Suppose that 1 is M-smooth, and fix v > 0. Set p = #neng and let 8, = argming_pa {37, £:(6) + p(6)}.

11

OTCS for Smooth GLMs (Adaptive Design)

Suppose that 1 is M-smooth, and fix v > 0. Set p = #neng and let 8, = argming_pa {37, £:(6) + p(6)}.
Then, for any § € (0, 1], the sets ©1, 02, ... satisfy P(In > 1: 6* ¢ ©,) < §, where

n n > —~ 9
O, = {9 : D0 0(0) = > £e(Bn) < logdet(y? MA, +1d) + 15242 4 1og}s}
t=1 t=1

11

OTCS for Smooth GLMs (Adaptive Design)

Suppose that 1 is M-smooth, and fix v > 0. Set p = #neng and let 8, = argming_pa {37, £:(6) + p(6)}.
Then, for any § € (0, 1], the sets ©1, 02, ... satisfy P(In > 1: 6* ¢ ©,) < §, where

0, = {9 3" 0(8) = > (8n) < Llogdet(v? MA, +1d) + “9"“2 +log L }

If it is known that ||0* ||2 < B, then we can also use

O, = {9 By (0,§n) < %logdet('szAn +Id) + % + log %}

11

OTCS for Smooth GLMs (Adaptive Design)

Suppose that 1 is M-smooth, and fix v > 0. Set p = #neng and let 8, = argming_pa {37, £:(6) + p(6)}.
Then, for any § € (0, 1], the sets ©1, 02, ... satisfy P(In > 1: 6* ¢ ©,) < §, where

0, = {9 3" 0(8) = > (8n) < Llogdet(v? MA, +1d) + “9"“2 +log L }

If it is known that ||0* ||2 < B, then we can also use

O, = {9 By (0,§n) < %logdet('szAn +Id) + % + log %}

For general (smooth) GLMs, we match the best confidence sequence that we're aware of (except the radius of
ours is dimension-free).

11

OTCS for Smooth GLMs (Adaptive Design)

Suppose that 1 is M-smooth, and fix v > 0. Set p = #neng and let 8, = argming_pa {37, £:(6) + p(6)}.
Then, for any § € (0, 1], the sets ©1, 02, ... satisfy P(In > 1: 6* ¢ ©,) < §, where

n n > —~ 9
O, = {9 : D0 0(0) = > £e(Bn) < logdet(y? MA, +1d) + 15242 4 1ogg}
t=1 t=1

If it is known that ||0* ||2 < B, then we can also use

O, = {9 By (0,§n) < %logdet('szAn +Id) + % + log %}

For general (smooth) GLMs, we match the best confidence sequence that we're aware of (except the radius of
ours is dimension-free).

For linear models, the Bregman ball becomes the ellipsoid,
~ 2
On = {0 2|6 — 0””?\n+7121d < logdet(v2MA,, +1d) + 5—2 + 2log %}

11

OTCS for Smooth GLMs (Adaptive Design)

Suppose that 1 is M-smooth, and fix v > 0. Set p = #neng and let 8, = argming_pa {37, £:(6) + p(6)}.
Then, for any § € (0, 1], the sets ©1, 02, ... satisfy P(In > 1: 6* ¢ ©,) < §, where
n n > §n 9
O, = {9 : D0 0(0) = > £e(Bn) < logdet(y? MA, +1d) + 15242 4 1ogg}
t=1 t=1
If it is known that ||0* ||2 < B, then we can also use

O, = {9 By (0,§n) < %logdet('szAn +Id) + % + log %}

For general (smooth) GLMs, we match the best confidence sequence that we're aware of (except the radius of
ours is dimension-free).

For linear models, the Bregman ball becomes the ellipsoid,

~ 2
On = {0 2|6 — 0””?\n+ﬁljld < logdet(v2MA,, +1d) + 5—2 +210g%}
Bt

This matches the one you would get from self-normalised concentration (with slightly better constants). 1

OTCS for Oblivious Design

Let Spp = {0 : max;c(y,) (0, X¢)| < b}, let é\n,b = argminges, S 4e(0) and let W(0) = >-7 ¥((0, Xy)).
Suppose that 0* satisfies sup;¢(,,) [(6*, X¢)| < b (w.p. 1) that) is M-smooth on R and m-strongly-convex on
[~b,0]. Set p(0) = 5510 — 0*[% -

12

OTCS for Oblivious Design

Let Spp = {0 : max;c(y,) (0, X¢)| < b}, let é\n,b = argminges, S 4e(0) and let W(0) = >-7 ¥((0, Xy)).
Suppose that 0* satisfies sup;¢(,,) [(6*, X¢)| < b (w.p. 1) that) is M-smooth on R and m-strongly-convex on
[~b,0]. Set p(0) = 5510 — 0*[% -

For any 6 € (0, 1], the OTCS with oblivious design tells us that

P (Z?:llt(ﬂ*) = X le(On) < §log(1+ MY?) + 55510, — 07113, +log %) .

12

OTCS for Oblivious Design

Let Spp = {0 : max;c(y,) (0, X¢)| < b}, let é\n,b = argmingegs, , D1y £e(0) andlet W(0) = 350, ({0, X¢)).
Suppose that 0* satisfies sup;¢(,,) [(6*, X¢)| < b (w.p. 1) that) is M-smooth on R and m-strongly-convex on
[~b,0]. Set p(0) = 5510 — 0*[% -

For any 6 € (0, 1], the OTCS with oblivious design tells us that

P (Z?:llt((?*) = X le(On) < §log(1+ MY?) + 55510, — 07113, +log %) .

Using the first-order optimality condition satisfied by §n,b and strong convexity of ¢ on [—b, b],

By (6%,8,) < L0 0e(0) = i1 e(Bnp), and gl — 0*11%, < 72 Bu(6%,6,).

m

12

OTCS for Oblivious Design

Let Spp = {0 : max;c(y,) (0, X¢)| < b}, let é\n,b = argmingegs, , D1y £e(0) andlet W(0) = 350, ({0, X¢)).
Suppose that 0* satisfies sup;¢(,,) [(6*, X¢)| < b (w.p. 1) that) is M-smooth on R and m-strongly-convex on
[~b,0]. Set p(0) = 5510 — 0*[% -

For any 6 € (0, 1], the OTCS with oblivious design tells us that

P (Z?:llt((?*) = X le(On) < §log(1+ MY?) + 55510, — 07113, +log %) .

Using the first-order optimality condition satisfied by §n,b and strong convexity of ¢ on [—b, b],

By (6%,8,) < L0 0e(0) = i1 e(Bnp), and gl — 0*11%, < 72 Bu(6%,6,).

m

Therefore (with 42 = 2/m), the set ©,, satisfies P(9* ¢ ©,,) < §, where

On = {9 : By (0,0,,) < dlog(1 + 2M/m) + 2log %} .

12

OTCS for Oblivious Design

Let Spp = {0 : max;c(y,) (0, X¢)| < b}, let é\n,b = argmingegs, , D1y £e(0) andlet W(0) = 350, ({0, X¢)).
Suppose that 0* satisfies sup;¢(,,) [(6*, X¢)| < b (w.p. 1) that) is M-smooth on R and m-strongly-convex on
[~b,0]. Set p(0) = 5510 — 0*[% -

For any 6 € (0, 1], the OTCS with oblivious design tells us that

B (SIm1le(6") — i1l Bnp) < Slog(1+ M) + gy |0y — 0%13, + 10 1) -

Using the first-order optimality condition satisfied by §n,b and strong convexity of ¢ on [—b, b],

By (0%,0n,0) < S £e(0) = Sy £e(Onp), and Ghy 0 — 0% (1%, < 72 Bu(0%,00,).

m

Therefore (with 42 = 2/m), the set ©,, satisfies P(9* ¢ ©,,) < §, where

On = {9 : By (0,0,,) < dlog(1 + 2M/m) + 2log %} .

For linear models, we get the ellipsoid

On = {9 20— gb,n“in < 2dlog(3) +410g%}) }

Conclusion

Conclusion

« Regret bounds can be converted into confidence sets/sequences for GLMs

13

Conclusion

« Regret bounds can be converted into confidence sets/sequences for GLMs

« Also in the paper: confidence sets with different shapes, confidence sets for sparse GLMs

13

Conclusion

« Regret bounds can be converted into confidence sets/sequences for GLMs
« Also in the paper: confidence sets with different shapes, confidence sets for sparse GLMs

« How to do this with the Normalised Maximum Likelihood forecaster instead of EWA?

13

Conclusion

« Regret bounds can be converted into confidence sets/sequences for GLMs
« Also in the paper: confidence sets with different shapes, confidence sets for sparse GLMs
+ How to do this with the Normalised Maximum Likelihood forecaster instead of EWA?

« For which ¢" (if any) is exp (37, (¢:(6*) — Li(q:))) an optimal e-variable/process?

13

Conclusion

« Regret bounds can be converted into confidence sets/sequences for GLMs
« Also in the paper: confidence sets with different shapes, confidence sets for sparse GLMs
+ How to do this with the Normalised Maximum Likelihood forecaster instead of EWA?

« For which ¢" (if any) is exp (37, (¢:(6*) — Li(q:))) an optimal e-variable/process?

The end. Thank you!

13

